Documentation

Mathlib.Data.DFinsupp.Interval

Finite intervals of finitely supported functions #

This file provides the LocallyFiniteOrder instance for Π₀ i, α i when α itself is locally finite and calculates the cardinality of its finite intervals.

def Finset.dfinsupp {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (α i)] (s : Finset ι) (t : (i : ι) → Finset (α i)) :
Finset (DFinsupp fun (i : ι) => α i)

Finitely supported product of finsets.

Equations
Instances For
    theorem Finset.card_dfinsupp {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (α i)] (s : Finset ι) (t : (i : ι) → Finset (α i)) :
    Eq (s.dfinsupp t).card (s.prod fun (i : ι) => (t i).card)
    theorem Finset.mem_dfinsupp_iff {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (α i)] {s : Finset ι} {f : DFinsupp fun (i : ι) => α i} {t : (i : ι) → Finset (α i)} [(i : ι) → DecidableEq (α i)] :
    Iff (Membership.mem (s.dfinsupp t) f) (And (HasSubset.Subset f.support s) (∀ (i : ι), Membership.mem s iMembership.mem (t i) (DFunLike.coe f i)))
    theorem Finset.mem_dfinsupp_iff_of_support_subset {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → Zero (α i)] {s : Finset ι} {f : DFinsupp fun (i : ι) => α i} [(i : ι) → DecidableEq (α i)] {t : DFinsupp fun (i : ι) => Finset (α i)} (ht : HasSubset.Subset t.support s) :

    When t is supported on s, f ∈ s.dfinsupp t precisely means that f is pointwise in t.

    def DFinsupp.singleton {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] (f : DFinsupp fun (i : ι) => α i) :
    DFinsupp fun (i : ι) => Finset (α i)

    Pointwise Finset.singleton bundled as a DFinsupp.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem DFinsupp.mem_singleton_apply_iff {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] {f : DFinsupp fun (i : ι) => α i} {i : ι} {a : α i} :
      def DFinsupp.rangeIcc {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
      DFinsupp fun (i : ι) => Finset (α i)

      Pointwise Finset.Icc bundled as a DFinsupp.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem DFinsupp.rangeIcc_apply {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) (i : ι) :
        theorem DFinsupp.mem_rangeIcc_apply_iff {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] {f g : DFinsupp fun (i : ι) => α i} {i : ι} {a : α i} :
        theorem DFinsupp.support_rangeIcc_subset {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → LocallyFiniteOrder (α i)] {f g : DFinsupp fun (i : ι) => α i} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] :
        def DFinsupp.pi {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] (f : DFinsupp fun (i : ι) => Finset (α i)) :
        Finset (DFinsupp fun (i : ι) => α i)

        Given a finitely supported function f : Π₀ i, Finset (α i), one can define the finset f.pi of all finitely supported functions whose value at i is in f i for all i.

        Equations
        Instances For
          theorem DFinsupp.mem_pi {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] {f : DFinsupp fun (i : ι) => Finset (α i)} {g : DFinsupp fun (i : ι) => α i} :
          Iff (Membership.mem f.pi g) (∀ (i : ι), Membership.mem (DFunLike.coe f i) (DFunLike.coe g i))
          theorem DFinsupp.card_pi {ι : Type u_1} {α : ιType u_2} [(i : ι) → Zero (α i)] [DecidableEq ι] [(i : ι) → DecidableEq (α i)] (f : DFinsupp fun (i : ι) => Finset (α i)) :
          Eq f.pi.card (f.prod fun (i : ι) => (DFunLike.coe f i).card.cast)
          def DFinsupp.instLocallyFiniteOrder {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] :
          LocallyFiniteOrder (DFinsupp fun (i : ι) => α i)
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            theorem DFinsupp.Icc_eq {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
            theorem DFinsupp.card_Icc {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
            theorem DFinsupp.card_Ico {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
            theorem DFinsupp.card_Ioc {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
            theorem DFinsupp.card_Ioo {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → PartialOrder (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
            theorem DFinsupp.card_uIcc {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → Lattice (α i)] [(i : ι) → Zero (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f g : DFinsupp fun (i : ι) => α i) :
            theorem DFinsupp.card_Iic {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), CanonicallyOrderedAdd (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f : DFinsupp fun (i : ι) => α i) :
            Eq (Finset.Iic f).card (f.support.prod fun (i : ι) => (Finset.Iic (DFunLike.coe f i)).card)
            theorem DFinsupp.card_Iio {ι : Type u_1} {α : ιType u_2} [DecidableEq ι] [(i : ι) → DecidableEq (α i)] [(i : ι) → AddCommMonoid (α i)] [(i : ι) → PartialOrder (α i)] [∀ (i : ι), CanonicallyOrderedAdd (α i)] [(i : ι) → LocallyFiniteOrder (α i)] (f : DFinsupp fun (i : ι) => α i) :
            Eq (Finset.Iio f).card (HSub.hSub (f.support.prod fun (i : ι) => (Finset.Iic (DFunLike.coe f i)).card) 1)