Documentation

Mathlib.Data.Finset.Interval

Intervals of finsets as finsets #

This file provides the LocallyFiniteOrder instance for Finset α and calculates the cardinality of finite intervals of finsets.

If s t : Finset α, then Finset.Icc s t is the finset of finsets which include s and are included in t. For example, Finset.Icc {0, 1} {0, 1, 2, 3} = {{0, 1}, {0, 1, 2}, {0, 1, 3}, {0, 1, 2, 3}} and Finset.Icc {0, 1, 2} {0, 1, 3} = {}.

In addition, this file gives characterizations of monotone and strictly monotone functions out of Finset α in terms of Finset.insert

theorem Finset.Icc_eq_filter_powerset {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
Finset.Icc s t = Finset.filter ((fun x x_1 => x x_1) s) (Finset.powerset t)
theorem Finset.Ico_eq_filter_ssubsets {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
Finset.Ico s t = Finset.filter ((fun x x_1 => x x_1) s) (Finset.ssubsets t)
theorem Finset.Ioc_eq_filter_powerset {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
Finset.Ioc s t = Finset.filter ((fun x x_1 => x x_1) s) (Finset.powerset t)
theorem Finset.Ioo_eq_filter_ssubsets {α : Type u_1} [DecidableEq α] (s : Finset α) (t : Finset α) :
Finset.Ioo s t = Finset.filter ((fun x x_1 => x x_1) s) (Finset.ssubsets t)
theorem Finset.Icc_eq_image_powerset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :
Finset.Icc s t = Finset.image ((fun x x_1 => x x_1) s) (Finset.powerset (t \ s))
theorem Finset.Ico_eq_image_ssubsets {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :
Finset.Ico s t = Finset.image ((fun x x_1 => x x_1) s) (Finset.ssubsets (t \ s))
theorem Finset.card_Icc_finset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :

Cardinality of a non-empty Icc of finsets.

theorem Finset.card_Ico_finset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :

Cardinality of an Ico of finsets.

theorem Finset.card_Ioc_finset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :

Cardinality of an Ioc of finsets.

theorem Finset.card_Ioo_finset {α : Type u_1} [DecidableEq α] {s : Finset α} {t : Finset α} (h : s t) :

Cardinality of an Ioo of finsets.

Cardinality of an Iic of finsets.

theorem Finset.card_Iio_finset {α : Type u_1} [DecidableEq α] {s : Finset α} :

Cardinality of an Iio of finsets.

theorem Finset.covby_cons {α : Type u_1} {s : Finset α} {i : α} (hi : ¬i s) :
s Finset.cons i s hi
theorem Finset.covby_iff {α : Type u_1} {s : Finset α} {t : Finset α} :
s t i hi, t = Finset.cons i s hi
theorem Finset.monotone_iff {α : Type u_1} {β : Type u_2} [Preorder β] (f : Finset αβ) :
Monotone f ∀ (s : Finset α) {i : α} (hi : ¬i s), f s f (Finset.cons i s hi)

A function f from Finset α is monotone if and only if f s ≤ f (cons i s hi) for all s and i ∉ s.

theorem Finset.strictMono_iff {α : Type u_1} {β : Type u_2} [Preorder β] (f : Finset αβ) :
StrictMono f ∀ (s : Finset α) {i : α} (hi : ¬i s), f s < f (Finset.cons i s hi)

A function f from Finset α is strictly monotone if and only if f s < f (insert i s) for all s and i ∉ s.

theorem Finset.antitone_iff {α : Type u_1} {β : Type u_2} [Preorder β] (f : Finset αβ) :
Antitone f ∀ (s : Finset α) {i : α} (hi : ¬i s), f (Finset.cons i s hi) f s

A function f from Finset α is antitone if and only if f (cons i s hi) ≤ f s for all s and i ∉ s.

theorem Finset.strictAnti_iff {α : Type u_1} {β : Type u_2} [Preorder β] (f : Finset αβ) :
StrictAnti f ∀ (s : Finset α) {i : α} (hi : ¬i s), f (Finset.cons i s hi) < f s

A function f from Finset α is strictly antitone if and only if f (cons i s hi) < f s for all s and i ∉ s.

theorem Finset.covby_insert {α : Type u_1} {s : Finset α} [DecidableEq α] {i : α} (hi : ¬i s) :
s insert i s
theorem Finset.covby_iff' {α : Type u_1} {s : Finset α} {t : Finset α} [DecidableEq α] :
s t i, ¬i s t = insert i s
theorem Finset.monotone_iff' {α : Type u_1} [DecidableEq α] {β : Type u_2} [Preorder β] (f : Finset αβ) :
Monotone f ∀ (s : Finset α) {i : α}, ¬i sf s f (insert i s)

A function f from Finset α is monotone if and only if f s ≤ f (insert i s) for all s and i ∉ s.

theorem Finset.strictMono_iff' {α : Type u_1} [DecidableEq α] {β : Type u_2} [Preorder β] (f : Finset αβ) :
StrictMono f ∀ (s : Finset α) {i : α}, ¬i sf s < f (insert i s)

A function f from Finset α is strictly monotone if and only if f s < f (insert i s) for all s and i ∉ s.

theorem Finset.antitone_iff' {α : Type u_1} [DecidableEq α] {β : Type u_2} [Preorder β] (f : Finset αβ) :
Antitone f ∀ (s : Finset α) {i : α}, ¬i sf (insert i s) f s

A function f from Finset α is antitone if and only if f (insert i s) ≤ f s for all s and i ∉ s.

theorem Finset.strictAnti_iff' {α : Type u_1} [DecidableEq α] {β : Type u_2} [Preorder β] (f : Finset αβ) :
StrictAnti f ∀ (s : Finset α) {i : α}, ¬i sf (insert i s) < f s

A function f from Finset α is strictly antitone if and only if f (insert i s) < f s for all s and i ∉ s.