Documentation

Mathlib.Data.Finset.Sort

Construct a sorted list from a finset. #

sort #

def Finset.sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
List α

sort s constructs a sorted list from the unordered set s. (Uses merge sort algorithm.)

Equations
Instances For
    @[simp]
    theorem Finset.sort_val {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    Multiset.sort r s.val = sort r s
    @[simp]
    theorem Finset.sort_sorted {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    @[simp]
    theorem Finset.sort_eq {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    (sort r s) = s.val
    @[simp]
    theorem Finset.sort_nodup {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    (sort r s).Nodup
    @[simp]
    theorem Finset.sort_toFinset {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] [DecidableEq α] (s : Finset α) :
    (sort r s).toFinset = s
    @[simp]
    theorem Finset.mem_sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] {s : Finset α} {a : α} :
    a sort r s a s
    @[simp]
    theorem Finset.length_sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] {s : Finset α} :
    (sort r s).length = s.card
    @[simp]
    theorem Finset.sort_empty {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] :
    sort r = []
    @[simp]
    theorem Finset.sort_singleton {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (a : α) :
    sort r {a} = [a]
    theorem Finset.sort_cons {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] {a : α} {s : Finset α} (h₁ : bs, r a b) (h₂ : as) :
    sort r (cons a s h₂) = a :: sort r s
    theorem Finset.sort_insert {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] [DecidableEq α] {a : α} {s : Finset α} (h₁ : bs, r a b) (h₂ : as) :
    sort r (insert a s) = a :: sort r s
    @[simp]
    theorem Finset.sort_range (n : ) :
    sort (fun (x1 x2 : ) => x1 x2) (range n) = List.range n
    theorem Finset.sort_perm_toList {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] (s : Finset α) :
    (sort r s).Perm s.toList
    theorem List.toFinset_sort {α : Type u_1} (r : ααProp) [DecidableRel r] [IsTrans α r] [IsAntisymm α r] [IsTotal α r] [DecidableEq α] {l : List α} (hl : l.Nodup) :
    Finset.sort r l.toFinset = l Sorted r l
    theorem Finset.sort_sorted_lt {α : Type u_1} [LinearOrder α] (s : Finset α) :
    List.Sorted (fun (x1 x2 : α) => x1 < x2) (sort (fun (x1 x2 : α) => x1 x2) s)
    theorem Finset.sort_sorted_gt {α : Type u_1} [LinearOrder α] (s : Finset α) :
    List.Sorted (fun (x1 x2 : α) => x1 > x2) (sort (fun (x1 x2 : α) => x1 x2) s)
    theorem Finset.sorted_zero_eq_min'_aux {α : Type u_1} [LinearOrder α] (s : Finset α) (h : 0 < (sort (fun (x1 x2 : α) => x1 x2) s).length) (H : s.Nonempty) :
    (sort (fun (x1 x2 : α) => x1 x2) s).get 0, h = s.min' H
    theorem Finset.sorted_zero_eq_min' {α : Type u_1} [LinearOrder α] {s : Finset α} {h : 0 < (sort (fun (x1 x2 : α) => x1 x2) s).length} :
    (sort (fun (x1 x2 : α) => x1 x2) s)[0] = s.min'
    theorem Finset.min'_eq_sorted_zero {α : Type u_1} [LinearOrder α] {s : Finset α} {h : s.Nonempty} :
    s.min' h = (sort (fun (x1 x2 : α) => x1 x2) s)[0]
    theorem Finset.sorted_last_eq_max'_aux {α : Type u_1} [LinearOrder α] (s : Finset α) (h : (sort (fun (x1 x2 : α) => x1 x2) s).length - 1 < (sort (fun (x1 x2 : α) => x1 x2) s).length) (H : s.Nonempty) :
    (sort (fun (x1 x2 : α) => x1 x2) s)[(sort (fun (x1 x2 : α) => x1 x2) s).length - 1] = s.max' H
    theorem Finset.sorted_last_eq_max' {α : Type u_1} [LinearOrder α] {s : Finset α} {h : (sort (fun (x1 x2 : α) => x1 x2) s).length - 1 < (sort (fun (x1 x2 : α) => x1 x2) s).length} :
    (sort (fun (x1 x2 : α) => x1 x2) s)[(sort (fun (x1 x2 : α) => x1 x2) s).length - 1] = s.max'
    theorem Finset.max'_eq_sorted_last {α : Type u_1} [LinearOrder α] {s : Finset α} {h : s.Nonempty} :
    s.max' h = (sort (fun (x1 x2 : α) => x1 x2) s)[(sort (fun (x1 x2 : α) => x1 x2) s).length - 1]
    def Finset.orderIsoOfFin {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) :
    Fin k ≃o { x : α // x s }

    Given a finset s of cardinality k in a linear order α, the map orderIsoOfFin s h is the increasing bijection between Fin k and s as an OrderIso. Here, h is a proof that the cardinality of s is k. We use this instead of an iso Fin s.card ≃o s to avoid casting issues in further uses of this function.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Finset.orderEmbOfFin {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) :
      Fin k ↪o α

      Given a finset s of cardinality k in a linear order α, the map orderEmbOfFin s h is the increasing bijection between Fin k and s as an order embedding into α. Here, h is a proof that the cardinality of s is k. We use this instead of an embedding Fin s.card ↪o α to avoid casting issues in further uses of this function.

      Equations
      Instances For
        @[simp]
        theorem Finset.coe_orderIsoOfFin_apply {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) (i : Fin k) :
        ((s.orderIsoOfFin h) i) = (s.orderEmbOfFin h) i
        theorem Finset.orderIsoOfFin_symm_apply {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) (x : { x : α // x s }) :
        ((s.orderIsoOfFin h).symm x) = List.indexOf (↑x) (sort (fun (x1 x2 : α) => x1 x2) s)
        theorem Finset.orderEmbOfFin_apply {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) (i : Fin k) :
        (s.orderEmbOfFin h) i = (sort (fun (x1 x2 : α) => x1 x2) s)[i]
        @[simp]
        theorem Finset.orderEmbOfFin_mem {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) (i : Fin k) :
        (s.orderEmbOfFin h) i s
        @[simp]
        theorem Finset.range_orderEmbOfFin {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : s.card = k) :
        Set.range (s.orderEmbOfFin h) = s
        theorem Finset.orderEmbOfFin_zero {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : s.card = k) (hz : 0 < k) :
        (s.orderEmbOfFin h) 0, hz = s.min'

        The bijection orderEmbOfFin s h sends 0 to the minimum of s.

        theorem Finset.orderEmbOfFin_last {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : s.card = k) (hz : 0 < k) :
        (s.orderEmbOfFin h) k - 1, = s.max'

        The bijection orderEmbOfFin s h sends k-1 to the maximum of s.

        @[simp]
        theorem Finset.orderEmbOfFin_singleton {α : Type u_1} [LinearOrder α] (a : α) (i : Fin 1) :
        ({a}.orderEmbOfFin ) i = a

        orderEmbOfFin {a} h sends any argument to a.

        theorem Finset.orderEmbOfFin_unique {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : s.card = k) {f : Fin kα} (hfs : ∀ (x : Fin k), f x s) (hmono : StrictMono f) :
        f = (s.orderEmbOfFin h)

        Any increasing map f from Fin k to a finset of cardinality k has to coincide with the increasing bijection orderEmbOfFin s h.

        theorem Finset.orderEmbOfFin_unique' {α : Type u_1} [LinearOrder α] {s : Finset α} {k : } (h : s.card = k) {f : Fin k ↪o α} (hfs : ∀ (x : Fin k), f x s) :
        f = s.orderEmbOfFin h

        An order embedding f from Fin k to a finset of cardinality k has to coincide with the increasing bijection orderEmbOfFin s h.

        @[simp]
        theorem Finset.orderEmbOfFin_eq_orderEmbOfFin_iff {α : Type u_1} [LinearOrder α] {k l : } {s : Finset α} {i : Fin k} {j : Fin l} {h : s.card = k} {h' : s.card = l} :
        (s.orderEmbOfFin h) i = (s.orderEmbOfFin h') j i = j

        Two parametrizations orderEmbOfFin of the same set take the same value on i and j if and only if i = j. Since they can be defined on a priori not defeq types Fin k and Fin l (although necessarily k = l), the conclusion is rather written (i : ℕ) = (j : ℕ).

        def Finset.orderEmbOfCardLe {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : k s.card) :
        Fin k ↪o α

        Given a finset s of size at least k in a linear order α, the map orderEmbOfCardLe is an order embedding from Fin k to α whose image is contained in s. Specifically, it maps Fin k to an initial segment of s.

        Equations
        Instances For
          theorem Finset.orderEmbOfCardLe_mem {α : Type u_1} [LinearOrder α] (s : Finset α) {k : } (h : k s.card) (a : Fin k) :
          (s.orderEmbOfCardLe h) a s
          unsafe instance Finset.instRepr {α : Type u_1} [Repr α] :
          Equations
          theorem Fin.sort_univ (n : ) :
          Finset.sort (fun (x y : Fin n) => x y) Finset.univ = List.finRange n
          def Fintype.orderIsoFinOfCardEq (α : Type u_1) [LinearOrder α] [Fintype α] {k : } (h : card α = k) :
          Fin k ≃o α

          Given a Fintype α of cardinality k, the map orderIsoFinOfCardEq s h is the increasing bijection between Fin k and α as an OrderIso. Here, h is a proof that the cardinality of α is k. We use this instead of an iso Fin (Fintype.card α) ≃o α to avoid casting issues in further uses of this function.

          Equations
          Instances For
            theorem nonempty_orderEmbedding_of_finite_infinite (α : Type u_1) [LinearOrder α] [hα : Finite α] (β : Type u_2) [LinearOrder β] [hβ : Infinite β] :
            Nonempty (α ↪o β)

            Any finite linear order order-embeds into any infinite linear order.