Documentation

Mathlib.Data.Finsupp.Defs

Type of functions with finite support #

For any type α and any type M with zero, we define the type Finsupp α M (notation: α →₀ M) of finitely supported functions from α to M, i.e. the functions which are zero everywhere on α except on a finite set.

Functions with finite support are used (at least) in the following parts of the library:

Some other constructions are naturally equivalent to α →₀ M with some α and M but are defined in a different way in the library:

Most of the theory assumes that the range is a commutative additive monoid. This gives us the big sum operator as a powerful way to construct Finsupp elements, which is defined in Algebra/BigOperators/Finsupp.

-- Porting note: the semireducibility remark no longer applies in Lean 4, afaict. Many constructions based on α →₀ M use semireducible type tags to avoid reusing unwanted type instances. E.g., MonoidAlgebra, AddMonoidAlgebra, and types based on these two have non-pointwise multiplication.

Main declarations #

Notations #

This file adds α →₀ M as a global notation for Finsupp α M.

We also use the following convention for Type* variables in this file

Implementation notes #

This file is a noncomputable theory and uses classical logic throughout.

TODO #

structure Finsupp (α : Type u_13) (M : Type u_14) [Zero M] :
Type (max u_13 u_14)

Finsupp α M, denoted α →₀ M, is the type of functions f : α → M such that f x = 0 for all but finitely many x.

  • support : Finset α

    The support of a finitely supported function (aka Finsupp).

  • toFun : αM

    The underlying function of a bundled finitely supported function (aka Finsupp).

  • mem_support_toFun (a : α) : a self.support self.toFun a 0

    The witness that the support of a Finsupp is indeed the exact locus where its underlying function is nonzero.

Instances For

    Finsupp α M, denoted α →₀ M, is the type of functions f : α → M such that f x = 0 for all but finitely many x.

    Equations
    Instances For

      Basic declarations about Finsupp #

      instance Finsupp.instFunLike {α : Type u_1} {M : Type u_5} [Zero M] :
      FunLike (α →₀ M) α M
      Equations
      theorem Finsupp.ext {α : Type u_1} {M : Type u_5} [Zero M] {f g : α →₀ M} (h : ∀ (a : α), f a = g a) :
      f = g
      theorem Finsupp.ne_iff {α : Type u_1} {M : Type u_5} [Zero M] {f g : α →₀ M} :
      f g ∃ (a : α), f a g a
      @[simp]
      theorem Finsupp.coe_mk {α : Type u_1} {M : Type u_5} [Zero M] (f : αM) (s : Finset α) (h : ∀ (a : α), a s f a 0) :
      { support := s, toFun := f, mem_support_toFun := h } = f
      instance Finsupp.instZero {α : Type u_1} {M : Type u_5} [Zero M] :
      Zero (α →₀ M)
      Equations
      @[simp]
      theorem Finsupp.coe_zero {α : Type u_1} {M : Type u_5} [Zero M] :
      0 = 0
      theorem Finsupp.zero_apply {α : Type u_1} {M : Type u_5} [Zero M] {a : α} :
      0 a = 0
      @[simp]
      theorem Finsupp.support_zero {α : Type u_1} {M : Type u_5} [Zero M] :
      instance Finsupp.instInhabited {α : Type u_1} {M : Type u_5} [Zero M] :
      Equations
      @[simp]
      theorem Finsupp.mem_support_iff {α : Type u_1} {M : Type u_5} [Zero M] {f : α →₀ M} {a : α} :
      a f.support f a 0
      @[simp]
      theorem Finsupp.fun_support_eq {α : Type u_1} {M : Type u_5} [Zero M] (f : α →₀ M) :
      Function.support f = f.support
      theorem Finsupp.not_mem_support_iff {α : Type u_1} {M : Type u_5} [Zero M] {f : α →₀ M} {a : α} :
      af.support f a = 0
      @[simp]
      theorem Finsupp.coe_eq_zero {α : Type u_1} {M : Type u_5} [Zero M] {f : α →₀ M} :
      f = 0 f = 0
      theorem Finsupp.ext_iff' {α : Type u_1} {M : Type u_5} [Zero M] {f g : α →₀ M} :
      f = g f.support = g.support xf.support, f x = g x
      @[simp]
      theorem Finsupp.support_eq_empty {α : Type u_1} {M : Type u_5} [Zero M] {f : α →₀ M} :
      f.support = f = 0
      theorem Finsupp.support_nonempty_iff {α : Type u_1} {M : Type u_5} [Zero M] {f : α →₀ M} :
      f.support.Nonempty f 0
      theorem Finsupp.card_support_eq_zero {α : Type u_1} {M : Type u_5} [Zero M] {f : α →₀ M} :
      f.support.card = 0 f = 0
      instance Finsupp.instDecidableEq {α : Type u_1} {M : Type u_5} [Zero M] [DecidableEq α] [DecidableEq M] :
      Equations
      theorem Finsupp.finite_support {α : Type u_1} {M : Type u_5} [Zero M] (f : α →₀ M) :
      (Function.support f).Finite
      theorem Finsupp.support_subset_iff {α : Type u_1} {M : Type u_5} [Zero M] {s : Set α} {f : α →₀ M} :
      f.support s as, f a = 0
      def Finsupp.equivFunOnFinite {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] :
      (α →₀ M) (αM)

      Given Finite α, equivFunOnFinite is the Equiv between α →₀ β and α → β. (All functions on a finite type are finitely supported.)

      Equations
      • Finsupp.equivFunOnFinite = { toFun := DFunLike.coe, invFun := fun (f : αM) => { support := .toFinset, toFun := f, mem_support_toFun := }, left_inv := , right_inv := }
      Instances For
        @[simp]
        theorem Finsupp.equivFunOnFinite_symm_apply_support {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] (f : αM) :
        (equivFunOnFinite.symm f).support = .toFinset
        @[simp]
        theorem Finsupp.equivFunOnFinite_symm_apply_toFun {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] (f : αM) (a✝ : α) :
        (equivFunOnFinite.symm f) a✝ = f a✝
        @[simp]
        theorem Finsupp.equivFunOnFinite_apply {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] (a✝ : α →₀ M) (a : α) :
        equivFunOnFinite a✝ a = a✝ a
        @[simp]
        theorem Finsupp.equivFunOnFinite_symm_coe {M : Type u_5} [Zero M] {α : Type u_13} [Finite α] (f : α →₀ M) :
        equivFunOnFinite.symm f = f
        @[simp]
        theorem Finsupp.coe_equivFunOnFinite_symm {M : Type u_5} [Zero M] {α : Type u_13} [Finite α] (f : αM) :
        (equivFunOnFinite.symm f) = f
        noncomputable def Equiv.finsuppUnique {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] :
        (ι →₀ M) M

        If α has a unique term, the type of finitely supported functions α →₀ β is equivalent to β.

        Equations
        Instances For
          @[simp]
          theorem Equiv.finsuppUnique_symm_apply_toFun {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] (a✝ : M) (a✝¹ : ι) :
          (finsuppUnique.symm a✝) a✝¹ = a✝
          @[simp]
          theorem Equiv.finsuppUnique_apply {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] (a✝ : ι →₀ M) :
          finsuppUnique a✝ = a✝ default
          @[simp]
          theorem Equiv.finsuppUnique_symm_apply_support_val {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] (a✝ : M) :
          (finsuppUnique.symm a✝).support.val = Multiset.map Subtype.val Finset.univ.val
          theorem Finsupp.unique_ext {α : Type u_1} {M : Type u_5} [Zero M] [Unique α] {f g : α →₀ M} (h : f default = g default) :
          f = g

          Declarations about onFinset #

          def Finsupp.onFinset {α : Type u_1} {M : Type u_5} [Zero M] (s : Finset α) (f : αM) (hf : ∀ (a : α), f a 0a s) :
          α →₀ M

          Finsupp.onFinset s f hf is the finsupp function representing f restricted to the finset s. The function must be 0 outside of s. Use this when the set needs to be filtered anyways, otherwise a better set representation is often available.

          Equations
          Instances For
            @[simp]
            theorem Finsupp.coe_onFinset {α : Type u_1} {M : Type u_5} [Zero M] (s : Finset α) (f : αM) (hf : ∀ (a : α), f a 0a s) :
            (onFinset s f hf) = f
            @[simp]
            theorem Finsupp.onFinset_apply {α : Type u_1} {M : Type u_5} [Zero M] {s : Finset α} {f : αM} {hf : ∀ (a : α), f a 0a s} {a : α} :
            (onFinset s f hf) a = f a
            @[simp]
            theorem Finsupp.support_onFinset_subset {α : Type u_1} {M : Type u_5} [Zero M] {s : Finset α} {f : αM} {hf : ∀ (a : α), f a 0a s} :
            (onFinset s f hf).support s
            theorem Finsupp.mem_support_onFinset {α : Type u_1} {M : Type u_5} [Zero M] {s : Finset α} {f : αM} (hf : ∀ (a : α), f a 0a s) {a : α} :
            a (onFinset s f hf).support f a 0
            theorem Finsupp.support_onFinset {α : Type u_1} {M : Type u_5} [Zero M] [DecidableEq M] {s : Finset α} {f : αM} (hf : ∀ (a : α), f a 0a s) :
            (onFinset s f hf).support = Finset.filter (fun (a : α) => f a 0) s
            noncomputable def Finsupp.ofSupportFinite {α : Type u_1} {M : Type u_5} [Zero M] (f : αM) (hf : (Function.support f).Finite) :
            α →₀ M

            The natural Finsupp induced by the function f given that it has finite support.

            Equations
            Instances For
              theorem Finsupp.ofSupportFinite_coe {α : Type u_1} {M : Type u_5} [Zero M] {f : αM} {hf : (Function.support f).Finite} :
              (ofSupportFinite f hf) = f
              instance Finsupp.instCanLift {α : Type u_1} {M : Type u_5} [Zero M] :
              CanLift (αM) (α →₀ M) DFunLike.coe fun (f : αM) => (Function.support f).Finite

              Declarations about mapRange #

              def Finsupp.mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (f : MN) (hf : f 0 = 0) (g : α →₀ M) :
              α →₀ N

              The composition of f : M → N and g : α →₀ M is mapRange f hf g : α →₀ N, which is well-defined when f 0 = 0.

              This preserves the structure on f, and exists in various bundled forms for when f is itself bundled (defined in Data/Finsupp/Basic):

              • Finsupp.mapRange.equiv
              • Finsupp.mapRange.zeroHom
              • Finsupp.mapRange.addMonoidHom
              • Finsupp.mapRange.addEquiv
              • Finsupp.mapRange.linearMap
              • Finsupp.mapRange.linearEquiv
              Equations
              Instances For
                @[simp]
                theorem Finsupp.mapRange_apply {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {f : MN} {hf : f 0 = 0} {g : α →₀ M} {a : α} :
                (mapRange f hf g) a = f (g a)
                @[simp]
                theorem Finsupp.mapRange_zero {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {f : MN} {hf : f 0 = 0} :
                mapRange f hf 0 = 0
                @[simp]
                theorem Finsupp.mapRange_id {α : Type u_1} {M : Type u_5} [Zero M] (g : α →₀ M) :
                mapRange id g = g
                theorem Finsupp.mapRange_comp {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] (f : NP) (hf : f 0 = 0) (f₂ : MN) (hf₂ : f₂ 0 = 0) (h : (f f₂) 0 = 0) (g : α →₀ M) :
                mapRange (f f₂) h g = mapRange f hf (mapRange f₂ hf₂ g)
                @[simp]
                theorem Finsupp.mapRange_mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] (e₁ : NP) (e₂ : MN) (he₁ : e₁ 0 = 0) (he₂ : e₂ 0 = 0) (f : α →₀ M) :
                mapRange e₁ he₁ (mapRange e₂ he₂ f) = mapRange (e₁ e₂) f
                theorem Finsupp.support_mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {f : MN} {hf : f 0 = 0} {g : α →₀ M} :
                (mapRange f hf g).support g.support
                theorem Finsupp.support_mapRange_of_injective {ι : Type u_4} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {e : MN} (he0 : e 0 = 0) (f : ι →₀ M) (he : Function.Injective e) :
                (mapRange e he0 f).support = f.support
                theorem Finsupp.range_mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (e : MN) (he₀ : e 0 = 0) :
                Set.range (mapRange e he₀) = {g : α →₀ N | ∀ (i : α), g i Set.range e}
                theorem Finsupp.mapRange_injective {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (e : MN) (he₀ : e 0 = 0) (he : Function.Injective e) :

                Finsupp.mapRange of a injective function is injective.

                theorem Finsupp.mapRange_surjective {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (e : MN) (he₀ : e 0 = 0) (he : Function.Surjective e) :

                Finsupp.mapRange of a surjective function is surjective.

                Declarations about embDomain #

                def Finsupp.embDomain {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : α β) (v : α →₀ M) :
                β →₀ M

                Given f : α ↪ β and v : α →₀ M, Finsupp.embDomain f v : β →₀ M is the finitely supported function whose value at f a : β is v a. For a b : β outside the range of f, it is zero.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem Finsupp.support_embDomain {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : α β) (v : α →₀ M) :
                  (embDomain f v).support = Finset.map f v.support
                  @[simp]
                  theorem Finsupp.embDomain_zero {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : α β) :
                  embDomain f 0 = 0
                  @[simp]
                  theorem Finsupp.embDomain_apply {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : α β) (v : α →₀ M) (a : α) :
                  (embDomain f v) (f a) = v a
                  theorem Finsupp.embDomain_notin_range {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : α β) (v : α →₀ M) (a : β) (h : aSet.range f) :
                  (embDomain f v) a = 0
                  theorem Finsupp.embDomain_injective {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : α β) :
                  @[simp]
                  theorem Finsupp.embDomain_inj {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] {f : α β} {l₁ l₂ : α →₀ M} :
                  embDomain f l₁ = embDomain f l₂ l₁ = l₂
                  @[simp]
                  theorem Finsupp.embDomain_eq_zero {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] {f : α β} {l : α →₀ M} :
                  embDomain f l = 0 l = 0
                  theorem Finsupp.embDomain_mapRange {α : Type u_1} {β : Type u_2} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (f : α β) (g : MN) (p : α →₀ M) (hg : g 0 = 0) :
                  embDomain f (mapRange g hg p) = mapRange g hg (embDomain f p)

                  Declarations about zipWith #

                  def Finsupp.zipWith {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] (f : MNP) (hf : f 0 0 = 0) (g₁ : α →₀ M) (g₂ : α →₀ N) :
                  α →₀ P

                  Given finitely supported functions g₁ : α →₀ M and g₂ : α →₀ N and function f : M → N → P, Finsupp.zipWith f hf g₁ g₂ is the finitely supported function α →₀ P satisfying zipWith f hf g₁ g₂ a = f (g₁ a) (g₂ a), which is well-defined when f 0 0 = 0.

                  Equations
                  Instances For
                    @[simp]
                    theorem Finsupp.zipWith_apply {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] {f : MNP} {hf : f 0 0 = 0} {g₁ : α →₀ M} {g₂ : α →₀ N} {a : α} :
                    (zipWith f hf g₁ g₂) a = f (g₁ a) (g₂ a)
                    theorem Finsupp.support_zipWith {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] [D : DecidableEq α] {f : MNP} {hf : f 0 0 = 0} {g₁ : α →₀ M} {g₂ : α →₀ N} :
                    (zipWith f hf g₁ g₂).support g₁.support g₂.support

                    Additive monoid structure on α →₀ M #

                    instance Finsupp.instAdd {α : Type u_1} {M : Type u_5} [AddZeroClass M] :
                    Add (α →₀ M)
                    Equations
                    @[simp]
                    theorem Finsupp.coe_add {α : Type u_1} {M : Type u_5} [AddZeroClass M] (f g : α →₀ M) :
                    (f + g) = f + g
                    theorem Finsupp.add_apply {α : Type u_1} {M : Type u_5} [AddZeroClass M] (g₁ g₂ : α →₀ M) (a : α) :
                    (g₁ + g₂) a = g₁ a + g₂ a
                    theorem Finsupp.support_add {α : Type u_1} {M : Type u_5} [AddZeroClass M] [DecidableEq α] {g₁ g₂ : α →₀ M} :
                    (g₁ + g₂).support g₁.support g₂.support
                    theorem Finsupp.support_add_eq {α : Type u_1} {M : Type u_5} [AddZeroClass M] [DecidableEq α] {g₁ g₂ : α →₀ M} (h : Disjoint g₁.support g₂.support) :
                    (g₁ + g₂).support = g₁.support g₂.support
                    instance Finsupp.instAddZeroClass {α : Type u_1} {M : Type u_5} [AddZeroClass M] :
                    Equations
                    noncomputable def Finsupp.addEquivFunOnFinite {M : Type u_5} [AddZeroClass M] {ι : Type u_13} [Finite ι] :
                    (ι →₀ M) ≃+ (ιM)

                    When ι is finite and M is an AddMonoid, then Finsupp.equivFunOnFinite gives an AddEquiv

                    Equations
                    Instances For
                      noncomputable def AddEquiv.finsuppUnique {M : Type u_5} [AddZeroClass M] {ι : Type u_13} [Unique ι] :
                      (ι →₀ M) ≃+ M

                      AddEquiv between (ι →₀ M) and M, when ι has a unique element

                      Equations
                      Instances For
                        instance Finsupp.instIsCancelAdd {α : Type u_1} {M : Type u_5} [AddZeroClass M] [IsCancelAdd M] :
                        def Finsupp.applyAddHom {α : Type u_1} {M : Type u_5} [AddZeroClass M] (a : α) :
                        (α →₀ M) →+ M

                        Evaluation of a function f : α →₀ M at a point as an additive monoid homomorphism.

                        See Finsupp.lapply in LinearAlgebra/Finsupp for the stronger version as a linear map.

                        Equations
                        Instances For
                          @[simp]
                          theorem Finsupp.applyAddHom_apply {α : Type u_1} {M : Type u_5} [AddZeroClass M] (a : α) (g : α →₀ M) :
                          (applyAddHom a) g = g a
                          noncomputable def Finsupp.coeFnAddHom {α : Type u_1} {M : Type u_5} [AddZeroClass M] :
                          (α →₀ M) →+ αM

                          Coercion from a Finsupp to a function type is an AddMonoidHom.

                          Equations
                          Instances For
                            @[simp]
                            theorem Finsupp.coeFnAddHom_apply {α : Type u_1} {M : Type u_5} [AddZeroClass M] (a✝ : α →₀ M) (a : α) :
                            coeFnAddHom a✝ a = a✝ a
                            theorem Finsupp.mapRange_add {α : Type u_1} {M : Type u_5} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] {f : MN} {hf : f 0 = 0} (hf' : ∀ (x y : M), f (x + y) = f x + f y) (v₁ v₂ : α →₀ M) :
                            mapRange f hf (v₁ + v₂) = mapRange f hf v₁ + mapRange f hf v₂
                            theorem Finsupp.mapRange_add' {α : Type u_1} {β : Type u_2} {M : Type u_5} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] [FunLike β M N] [AddMonoidHomClass β M N] {f : β} (v₁ v₂ : α →₀ M) :
                            mapRange f (v₁ + v₂) = mapRange f v₁ + mapRange f v₂
                            def Finsupp.embDomain.addMonoidHom {α : Type u_1} {β : Type u_2} {M : Type u_5} [AddZeroClass M] (f : α β) :
                            (α →₀ M) →+ β →₀ M

                            Bundle Finsupp.embDomain f as an additive map from α →₀ M to β →₀ M.

                            Equations
                            Instances For
                              @[simp]
                              theorem Finsupp.embDomain.addMonoidHom_apply {α : Type u_1} {β : Type u_2} {M : Type u_5} [AddZeroClass M] (f : α β) (v : α →₀ M) :
                              @[simp]
                              theorem Finsupp.embDomain_add {α : Type u_1} {β : Type u_2} {M : Type u_5} [AddZeroClass M] (f : α β) (v w : α →₀ M) :
                              embDomain f (v + w) = embDomain f v + embDomain f w
                              instance Finsupp.instNatSMul {α : Type u_1} {M : Type u_5} [AddMonoid M] :
                              SMul (α →₀ M)

                              Note the general SMul instance for Finsupp doesn't apply as is not distributive unless β i's addition is commutative.

                              Equations
                              instance Finsupp.instAddMonoid {α : Type u_1} {M : Type u_5} [AddMonoid M] :
                              Equations
                              instance Finsupp.instNeg {α : Type u_1} {G : Type u_9} [NegZeroClass G] :
                              Neg (α →₀ G)
                              Equations
                              @[simp]
                              theorem Finsupp.coe_neg {α : Type u_1} {G : Type u_9} [NegZeroClass G] (g : α →₀ G) :
                              (-g) = -g
                              theorem Finsupp.neg_apply {α : Type u_1} {G : Type u_9} [NegZeroClass G] (g : α →₀ G) (a : α) :
                              (-g) a = -g a
                              theorem Finsupp.mapRange_neg {α : Type u_1} {G : Type u_9} {H : Type u_10} [NegZeroClass G] [NegZeroClass H] {f : GH} {hf : f 0 = 0} (hf' : ∀ (x : G), f (-x) = -f x) (v : α →₀ G) :
                              mapRange f hf (-v) = -mapRange f hf v
                              theorem Finsupp.mapRange_neg' {α : Type u_1} {β : Type u_2} {G : Type u_9} {H : Type u_10} [AddGroup G] [SubtractionMonoid H] [FunLike β G H] [AddMonoidHomClass β G H] {f : β} (v : α →₀ G) :
                              mapRange f (-v) = -mapRange f v
                              instance Finsupp.instSub {α : Type u_1} {G : Type u_9} [SubNegZeroMonoid G] :
                              Sub (α →₀ G)
                              Equations
                              @[simp]
                              theorem Finsupp.coe_sub {α : Type u_1} {G : Type u_9} [SubNegZeroMonoid G] (g₁ g₂ : α →₀ G) :
                              (g₁ - g₂) = g₁ - g₂
                              theorem Finsupp.sub_apply {α : Type u_1} {G : Type u_9} [SubNegZeroMonoid G] (g₁ g₂ : α →₀ G) (a : α) :
                              (g₁ - g₂) a = g₁ a - g₂ a
                              theorem Finsupp.mapRange_sub {α : Type u_1} {G : Type u_9} {H : Type u_10} [SubNegZeroMonoid G] [SubNegZeroMonoid H] {f : GH} {hf : f 0 = 0} (hf' : ∀ (x y : G), f (x - y) = f x - f y) (v₁ v₂ : α →₀ G) :
                              mapRange f hf (v₁ - v₂) = mapRange f hf v₁ - mapRange f hf v₂
                              theorem Finsupp.mapRange_sub' {α : Type u_1} {β : Type u_2} {G : Type u_9} {H : Type u_10} [AddGroup G] [SubtractionMonoid H] [FunLike β G H] [AddMonoidHomClass β G H] {f : β} (v₁ v₂ : α →₀ G) :
                              mapRange f (v₁ - v₂) = mapRange f v₁ - mapRange f v₂
                              instance Finsupp.instIntSMul {α : Type u_1} {G : Type u_9} [AddGroup G] :
                              SMul (α →₀ G)

                              Note the general SMul instance for Finsupp doesn't apply as is not distributive unless β i's addition is commutative.

                              Equations
                              instance Finsupp.instAddGroup {α : Type u_1} {G : Type u_9} [AddGroup G] :
                              Equations
                              @[simp]
                              theorem Finsupp.support_neg {α : Type u_1} {G : Type u_9} [AddGroup G] (f : α →₀ G) :
                              (-f).support = f.support
                              theorem Finsupp.support_sub {α : Type u_1} {G : Type u_9} [DecidableEq α] [AddGroup G] {f g : α →₀ G} :
                              (f - g).support f.support g.support