Documentation

Mathlib.Data.Finsupp.Defs

Type of functions with finite support #

For any type α and any type M with zero, we define the type Finsupp α M (notation: α →₀ M) of finitely supported functions from α to M, i.e. the functions which are zero everywhere on α except on a finite set.

Functions with finite support are used (at least) in the following parts of the library:

Some other constructions are naturally equivalent to α →₀ M with some α and M but are defined in a different way in the library:

Most of the theory assumes that the range is a commutative additive monoid. This gives us the big sum operator as a powerful way to construct Finsupp elements, which is defined in Mathlib.Algebra.BigOperators.Finsupp.Basic.

Many constructions based on α →₀ M are defs rather than abbrevs to avoid reusing unwanted type class instances. E.g., MonoidAlgebra, AddMonoidAlgebra, and types based on these two have non-pointwise multiplication.

Main declarations #

Notations #

This file adds α →₀ M as a global notation for Finsupp α M.

We also use the following convention for Type* variables in this file

Implementation notes #

This file is a noncomputable theory and uses classical logic throughout.

TODO #

structure Finsupp (α : Type u_13) (M : Type u_14) [Zero M] :
Type (max u_13 u_14)

Finsupp α M, denoted α →₀ M, is the type of functions f : α → M such that f x = 0 for all but finitely many x.

  • support : Finset α

    The support of a finitely supported function (aka Finsupp).

  • toFun : αM

    The underlying function of a bundled finitely supported function (aka Finsupp).

  • mem_support_toFun (a : α) : Iff (Membership.mem self.support a) (Ne (self.toFun a) 0)

    The witness that the support of a Finsupp is indeed the exact locus where its underlying function is nonzero.

Instances For

    Finsupp α M, denoted α →₀ M, is the type of functions f : α → M such that f x = 0 for all but finitely many x.

    Equations
    Instances For

      Basic declarations about Finsupp #

      def Finsupp.instFunLike {α : Type u_1} {M : Type u_5} [Zero M] :
      FunLike (Finsupp α M) α M
      Equations
      Instances For
        theorem Finsupp.ext {α : Type u_1} {M : Type u_5} [Zero M] {f g : Finsupp α M} (h : ∀ (a : α), Eq (DFunLike.coe f a) (DFunLike.coe g a)) :
        Eq f g
        theorem Finsupp.ext_iff {α : Type u_1} {M : Type u_5} [Zero M] {f g : Finsupp α M} :
        Iff (Eq f g) (∀ (a : α), Eq (DFunLike.coe f a) (DFunLike.coe g a))
        theorem Finsupp.ne_iff {α : Type u_1} {M : Type u_5} [Zero M] {f g : Finsupp α M} :
        Iff (Ne f g) (Exists fun (a : α) => Ne (DFunLike.coe f a) (DFunLike.coe g a))
        theorem Finsupp.coe_mk {α : Type u_1} {M : Type u_5} [Zero M] (f : αM) (s : Finset α) (h : ∀ (a : α), Iff (Membership.mem s a) (Ne (f a) 0)) :
        Eq (DFunLike.coe { support := s, toFun := f, mem_support_toFun := h }) f
        def Finsupp.instZero {α : Type u_1} {M : Type u_5} [Zero M] :
        Zero (Finsupp α M)
        Equations
        Instances For
          theorem Finsupp.coe_zero {α : Type u_1} {M : Type u_5} [Zero M] :
          theorem Finsupp.zero_apply {α : Type u_1} {M : Type u_5} [Zero M] {a : α} :
          def Finsupp.instInhabited {α : Type u_1} {M : Type u_5} [Zero M] :
          Equations
          Instances For
            theorem Finsupp.mem_support_iff {α : Type u_1} {M : Type u_5} [Zero M] {f : Finsupp α M} {a : α} :
            theorem Finsupp.fun_support_eq {α : Type u_1} {M : Type u_5} [Zero M] (f : Finsupp α M) :
            theorem Finsupp.not_mem_support_iff {α : Type u_1} {M : Type u_5} [Zero M] {f : Finsupp α M} {a : α} :
            theorem Finsupp.coe_eq_zero {α : Type u_1} {M : Type u_5} [Zero M] {f : Finsupp α M} :
            Iff (Eq (DFunLike.coe f) 0) (Eq f 0)
            theorem Finsupp.ext_iff' {α : Type u_1} {M : Type u_5} [Zero M] {f g : Finsupp α M} :
            Iff (Eq f g) (And (Eq f.support g.support) (∀ (x : α), Membership.mem f.support xEq (DFunLike.coe f x) (DFunLike.coe g x)))
            theorem Finsupp.support_eq_empty {α : Type u_1} {M : Type u_5} [Zero M] {f : Finsupp α M} :
            theorem Finsupp.support_nonempty_iff {α : Type u_1} {M : Type u_5} [Zero M] {f : Finsupp α M} :
            theorem Finsupp.card_support_eq_zero {α : Type u_1} {M : Type u_5} [Zero M] {f : Finsupp α M} :
            Iff (Eq f.support.card 0) (Eq f 0)
            def Finsupp.instDecidableEq {α : Type u_1} {M : Type u_5} [Zero M] [DecidableEq α] [DecidableEq M] :
            Equations
            Instances For
              theorem Finsupp.finite_support {α : Type u_1} {M : Type u_5} [Zero M] (f : Finsupp α M) :
              theorem Finsupp.support_subset_iff {α : Type u_1} {M : Type u_5} [Zero M] {s : Set α} {f : Finsupp α M} :
              Iff (HasSubset.Subset f.support.toSet s) (∀ (a : α), Not (Membership.mem s a)Eq (DFunLike.coe f a) 0)
              def Finsupp.equivFunOnFinite {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] :
              Equiv (Finsupp α M) (αM)

              Given Finite α, equivFunOnFinite is the Equiv between α →₀ β and α → β. (All functions on a finite type are finitely supported.)

              Equations
              Instances For
                theorem Finsupp.equivFunOnFinite_apply {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] (a✝ : Finsupp α M) (a : α) :
                theorem Finsupp.equivFunOnFinite_symm_apply_toFun {α : Type u_1} {M : Type u_5} [Zero M] [Finite α] (f : αM) (a✝ : α) :
                theorem Finsupp.coe_equivFunOnFinite_symm {M : Type u_5} [Zero M] {α : Type u_13} [Finite α] (f : αM) :
                noncomputable def Equiv.finsuppUnique {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] :
                Equiv (Finsupp ι M) M

                If α has a unique term, the type of finitely supported functions α →₀ β is equivalent to β.

                Equations
                Instances For
                  theorem Equiv.finsuppUnique_symm_apply_toFun {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] (a✝ : M) (a✝¹ : ι) :
                  theorem Equiv.finsuppUnique_apply {M : Type u_5} [Zero M] {ι : Type u_13} [Unique ι] (a✝ : Finsupp ι M) :
                  theorem Finsupp.unique_ext {α : Type u_1} {M : Type u_5} [Zero M] [Unique α] {f g : Finsupp α M} (h : Eq (DFunLike.coe f Inhabited.default) (DFunLike.coe g Inhabited.default)) :
                  Eq f g
                  theorem Finsupp.unique_ext_iff {α : Type u_1} {M : Type u_5} [Zero M] [Unique α] {f g : Finsupp α M} :

                  Declarations about onFinset #

                  def Finsupp.onFinset {α : Type u_1} {M : Type u_5} [Zero M] (s : Finset α) (f : αM) (hf : ∀ (a : α), Ne (f a) 0Membership.mem s a) :
                  Finsupp α M

                  Finsupp.onFinset s f hf is the finsupp function representing f restricted to the finset s. The function must be 0 outside of s. Use this when the set needs to be filtered anyways, otherwise a better set representation is often available.

                  Equations
                  Instances For
                    theorem Finsupp.coe_onFinset {α : Type u_1} {M : Type u_5} [Zero M] (s : Finset α) (f : αM) (hf : ∀ (a : α), Ne (f a) 0Membership.mem s a) :
                    Eq (DFunLike.coe (onFinset s f hf)) f
                    theorem Finsupp.onFinset_apply {α : Type u_1} {M : Type u_5} [Zero M] {s : Finset α} {f : αM} {hf : ∀ (a : α), Ne (f a) 0Membership.mem s a} {a : α} :
                    Eq (DFunLike.coe (onFinset s f hf) a) (f a)
                    theorem Finsupp.support_onFinset_subset {α : Type u_1} {M : Type u_5} [Zero M] {s : Finset α} {f : αM} {hf : ∀ (a : α), Ne (f a) 0Membership.mem s a} :
                    theorem Finsupp.mem_support_onFinset {α : Type u_1} {M : Type u_5} [Zero M] {s : Finset α} {f : αM} (hf : ∀ (a : α), Ne (f a) 0Membership.mem s a) {a : α} :
                    Iff (Membership.mem (onFinset s f hf).support a) (Ne (f a) 0)
                    theorem Finsupp.support_onFinset {α : Type u_1} {M : Type u_5} [Zero M] [DecidableEq M] {s : Finset α} {f : αM} (hf : ∀ (a : α), Ne (f a) 0Membership.mem s a) :
                    Eq (onFinset s f hf).support (Finset.filter (fun (a : α) => Ne (f a) 0) s)
                    noncomputable def Finsupp.ofSupportFinite {α : Type u_1} {M : Type u_5} [Zero M] (f : αM) (hf : (Function.support f).Finite) :
                    Finsupp α M

                    The natural Finsupp induced by the function f given that it has finite support.

                    Equations
                    Instances For
                      theorem Finsupp.ofSupportFinite_coe {α : Type u_1} {M : Type u_5} [Zero M] {f : αM} {hf : (Function.support f).Finite} :
                      theorem Finsupp.instCanLift {α : Type u_1} {M : Type u_5} [Zero M] :
                      CanLift (αM) (Finsupp α M) DFunLike.coe fun (f : αM) => (Function.support f).Finite

                      Declarations about mapRange #

                      def Finsupp.mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (f : MN) (hf : Eq (f 0) 0) (g : Finsupp α M) :
                      Finsupp α N

                      The composition of f : M → N and g : α →₀ M is mapRange f hf g : α →₀ N, which is well-defined when f 0 = 0.

                      This preserves the structure on f, and exists in various bundled forms for when f is itself bundled (defined in Data/Finsupp/Basic):

                      • Finsupp.mapRange.equiv
                      • Finsupp.mapRange.zeroHom
                      • Finsupp.mapRange.addMonoidHom
                      • Finsupp.mapRange.addEquiv
                      • Finsupp.mapRange.linearMap
                      • Finsupp.mapRange.linearEquiv
                      Equations
                      Instances For
                        theorem Finsupp.mapRange_apply {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {f : MN} {hf : Eq (f 0) 0} {g : Finsupp α M} {a : α} :
                        Eq (DFunLike.coe (mapRange f hf g) a) (f (DFunLike.coe g a))
                        theorem Finsupp.mapRange_zero {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {f : MN} {hf : Eq (f 0) 0} :
                        Eq (mapRange f hf 0) 0
                        theorem Finsupp.mapRange_id {α : Type u_1} {M : Type u_5} [Zero M] (g : Finsupp α M) :
                        Eq (mapRange id g) g
                        theorem Finsupp.mapRange_comp {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] (f : NP) (hf : Eq (f 0) 0) (f₂ : MN) (hf₂ : Eq (f₂ 0) 0) (h : Eq (Function.comp f f₂ 0) 0) (g : Finsupp α M) :
                        Eq (mapRange (Function.comp f f₂) h g) (mapRange f hf (mapRange f₂ hf₂ g))
                        theorem Finsupp.mapRange_mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] (e₁ : NP) (e₂ : MN) (he₁ : Eq (e₁ 0) 0) (he₂ : Eq (e₂ 0) 0) (f : Finsupp α M) :
                        Eq (mapRange e₁ he₁ (mapRange e₂ he₂ f)) (mapRange (Function.comp e₁ e₂) f)
                        theorem Finsupp.support_mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {f : MN} {hf : Eq (f 0) 0} {g : Finsupp α M} :
                        theorem Finsupp.support_mapRange_of_injective {ι : Type u_4} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] {e : MN} (he0 : Eq (e 0) 0) (f : Finsupp ι M) (he : Function.Injective e) :
                        theorem Finsupp.range_mapRange {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (e : MN) (he₀ : Eq (e 0) 0) :
                        Eq (Set.range (mapRange e he₀)) (setOf fun (g : Finsupp α N) => ∀ (i : α), Membership.mem (Set.range e) (DFunLike.coe g i))
                        theorem Finsupp.mapRange_injective {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (e : MN) (he₀ : Eq (e 0) 0) (he : Function.Injective e) :

                        Finsupp.mapRange of a injective function is injective.

                        theorem Finsupp.mapRange_surjective {α : Type u_1} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (e : MN) (he₀ : Eq (e 0) 0) (he : Function.Surjective e) :

                        Finsupp.mapRange of a surjective function is surjective.

                        Declarations about embDomain #

                        def Finsupp.embDomain {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : Function.Embedding α β) (v : Finsupp α M) :
                        Finsupp β M

                        Given f : α ↪ β and v : α →₀ M, Finsupp.embDomain f v : β →₀ M is the finitely supported function whose value at f a : β is v a. For a b : β outside the range of f, it is zero.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem Finsupp.support_embDomain {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : Function.Embedding α β) (v : Finsupp α M) :
                          theorem Finsupp.embDomain_zero {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : Function.Embedding α β) :
                          Eq (embDomain f 0) 0
                          theorem Finsupp.embDomain_apply {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : Function.Embedding α β) (v : Finsupp α M) (a : α) :
                          theorem Finsupp.embDomain_notin_range {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : Function.Embedding α β) (v : Finsupp α M) (a : β) (h : Not (Membership.mem (Set.range (DFunLike.coe f)) a)) :
                          theorem Finsupp.embDomain_injective {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] (f : Function.Embedding α β) :
                          theorem Finsupp.embDomain_inj {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] {f : Function.Embedding α β} {l₁ l₂ : Finsupp α M} :
                          Iff (Eq (embDomain f l₁) (embDomain f l₂)) (Eq l₁ l₂)
                          theorem Finsupp.embDomain_eq_zero {α : Type u_1} {β : Type u_2} {M : Type u_5} [Zero M] {f : Function.Embedding α β} {l : Finsupp α M} :
                          Iff (Eq (embDomain f l) 0) (Eq l 0)
                          theorem Finsupp.embDomain_mapRange {α : Type u_1} {β : Type u_2} {M : Type u_5} {N : Type u_7} [Zero M] [Zero N] (f : Function.Embedding α β) (g : MN) (p : Finsupp α M) (hg : Eq (g 0) 0) :
                          Eq (embDomain f (mapRange g hg p)) (mapRange g hg (embDomain f p))

                          Declarations about zipWith #

                          def Finsupp.zipWith {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] (f : MNP) (hf : Eq (f 0 0) 0) (g₁ : Finsupp α M) (g₂ : Finsupp α N) :
                          Finsupp α P

                          Given finitely supported functions g₁ : α →₀ M and g₂ : α →₀ N and function f : M → N → P, Finsupp.zipWith f hf g₁ g₂ is the finitely supported function α →₀ P satisfying zipWith f hf g₁ g₂ a = f (g₁ a) (g₂ a), which is well-defined when f 0 0 = 0.

                          Equations
                          Instances For
                            theorem Finsupp.zipWith_apply {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] {f : MNP} {hf : Eq (f 0 0) 0} {g₁ : Finsupp α M} {g₂ : Finsupp α N} {a : α} :
                            Eq (DFunLike.coe (zipWith f hf g₁ g₂) a) (f (DFunLike.coe g₁ a) (DFunLike.coe g₂ a))
                            theorem Finsupp.support_zipWith {α : Type u_1} {M : Type u_5} {N : Type u_7} {P : Type u_8} [Zero M] [Zero N] [Zero P] [D : DecidableEq α] {f : MNP} {hf : Eq (f 0 0) 0} {g₁ : Finsupp α M} {g₂ : Finsupp α N} :

                            Additive monoid structure on α →₀ M #

                            def Finsupp.instAdd {α : Type u_1} {M : Type u_5} [AddZeroClass M] :
                            Add (Finsupp α M)
                            Equations
                            Instances For
                              theorem Finsupp.coe_add {α : Type u_1} {M : Type u_5} [AddZeroClass M] (f g : Finsupp α M) :
                              theorem Finsupp.add_apply {α : Type u_1} {M : Type u_5} [AddZeroClass M] (g₁ g₂ : Finsupp α M) (a : α) :
                              Eq (DFunLike.coe (HAdd.hAdd g₁ g₂) a) (HAdd.hAdd (DFunLike.coe g₁ a) (DFunLike.coe g₂ a))
                              theorem Finsupp.support_add {α : Type u_1} {M : Type u_5} [AddZeroClass M] [DecidableEq α] {g₁ g₂ : Finsupp α M} :
                              theorem Finsupp.support_add_eq {α : Type u_1} {M : Type u_5} [AddZeroClass M] [DecidableEq α] {g₁ g₂ : Finsupp α M} (h : Disjoint g₁.support g₂.support) :
                              Eq (HAdd.hAdd g₁ g₂).support (Union.union g₁.support g₂.support)
                              def Finsupp.instAddZeroClass {α : Type u_1} {M : Type u_5} [AddZeroClass M] :
                              Equations
                              Instances For
                                noncomputable def Finsupp.addEquivFunOnFinite {M : Type u_5} [AddZeroClass M] {ι : Type u_13} [Finite ι] :
                                AddEquiv (Finsupp ι M) (ιM)

                                When ι is finite and M is an AddMonoid, then Finsupp.equivFunOnFinite gives an AddEquiv

                                Equations
                                Instances For
                                  noncomputable def AddEquiv.finsuppUnique {M : Type u_5} [AddZeroClass M] {ι : Type u_13} [Unique ι] :
                                  AddEquiv (Finsupp ι M) M

                                  AddEquiv between (ι →₀ M) and M, when ι has a unique element

                                  Equations
                                  Instances For
                                    def Finsupp.applyAddHom {α : Type u_1} {M : Type u_5} [AddZeroClass M] (a : α) :

                                    Evaluation of a function f : α →₀ M at a point as an additive monoid homomorphism.

                                    See Finsupp.lapply in LinearAlgebra/Finsupp for the stronger version as a linear map.

                                    Equations
                                    Instances For
                                      theorem Finsupp.applyAddHom_apply {α : Type u_1} {M : Type u_5} [AddZeroClass M] (a : α) (g : Finsupp α M) :
                                      noncomputable def Finsupp.coeFnAddHom {α : Type u_1} {M : Type u_5} [AddZeroClass M] :
                                      AddMonoidHom (Finsupp α M) (αM)

                                      Coercion from a Finsupp to a function type is an AddMonoidHom.

                                      Equations
                                      Instances For
                                        theorem Finsupp.coeFnAddHom_apply {α : Type u_1} {M : Type u_5} [AddZeroClass M] (a✝ : Finsupp α M) (a : α) :
                                        theorem Finsupp.mapRange_add {α : Type u_1} {M : Type u_5} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] {f : MN} {hf : Eq (f 0) 0} (hf' : ∀ (x y : M), Eq (f (HAdd.hAdd x y)) (HAdd.hAdd (f x) (f y))) (v₁ v₂ : Finsupp α M) :
                                        Eq (mapRange f hf (HAdd.hAdd v₁ v₂)) (HAdd.hAdd (mapRange f hf v₁) (mapRange f hf v₂))
                                        theorem Finsupp.mapRange_add' {α : Type u_1} {β : Type u_2} {M : Type u_5} {N : Type u_7} [AddZeroClass M] [AddZeroClass N] [FunLike β M N] [AddMonoidHomClass β M N] {f : β} (v₁ v₂ : Finsupp α M) :
                                        Eq (mapRange (DFunLike.coe f) (HAdd.hAdd v₁ v₂)) (HAdd.hAdd (mapRange (DFunLike.coe f) v₁) (mapRange (DFunLike.coe f) v₂))
                                        def Finsupp.embDomain.addMonoidHom {α : Type u_1} {β : Type u_2} {M : Type u_5} [AddZeroClass M] (f : Function.Embedding α β) :

                                        Bundle Finsupp.embDomain f as an additive map from α →₀ M to β →₀ M.

                                        Equations
                                        Instances For
                                          theorem Finsupp.embDomain.addMonoidHom_apply {α : Type u_1} {β : Type u_2} {M : Type u_5} [AddZeroClass M] (f : Function.Embedding α β) (v : Finsupp α M) :
                                          theorem Finsupp.embDomain_add {α : Type u_1} {β : Type u_2} {M : Type u_5} [AddZeroClass M] (f : Function.Embedding α β) (v w : Finsupp α M) :
                                          def Finsupp.instNatSMul {α : Type u_1} {M : Type u_5} [AddMonoid M] :

                                          Note the general SMul instance for Finsupp doesn't apply as is not distributive unless β i's addition is commutative.

                                          Equations
                                          Instances For
                                            def Finsupp.instAddMonoid {α : Type u_1} {M : Type u_5} [AddMonoid M] :
                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              Equations
                                              Instances For
                                                def Finsupp.instNeg {α : Type u_1} {G : Type u_9} [NegZeroClass G] :
                                                Neg (Finsupp α G)
                                                Equations
                                                Instances For
                                                  theorem Finsupp.coe_neg {α : Type u_1} {G : Type u_9} [NegZeroClass G] (g : Finsupp α G) :
                                                  theorem Finsupp.neg_apply {α : Type u_1} {G : Type u_9} [NegZeroClass G] (g : Finsupp α G) (a : α) :
                                                  theorem Finsupp.mapRange_neg {α : Type u_1} {G : Type u_9} {H : Type u_10} [NegZeroClass G] [NegZeroClass H] {f : GH} {hf : Eq (f 0) 0} (hf' : ∀ (x : G), Eq (f (Neg.neg x)) (Neg.neg (f x))) (v : Finsupp α G) :
                                                  Eq (mapRange f hf (Neg.neg v)) (Neg.neg (mapRange f hf v))
                                                  theorem Finsupp.mapRange_neg' {α : Type u_1} {β : Type u_2} {G : Type u_9} {H : Type u_10} [AddGroup G] [SubtractionMonoid H] [FunLike β G H] [AddMonoidHomClass β G H] {f : β} (v : Finsupp α G) :
                                                  def Finsupp.instSub {α : Type u_1} {G : Type u_9} [SubNegZeroMonoid G] :
                                                  Sub (Finsupp α G)
                                                  Equations
                                                  Instances For
                                                    theorem Finsupp.coe_sub {α : Type u_1} {G : Type u_9} [SubNegZeroMonoid G] (g₁ g₂ : Finsupp α G) :
                                                    theorem Finsupp.sub_apply {α : Type u_1} {G : Type u_9} [SubNegZeroMonoid G] (g₁ g₂ : Finsupp α G) (a : α) :
                                                    Eq (DFunLike.coe (HSub.hSub g₁ g₂) a) (HSub.hSub (DFunLike.coe g₁ a) (DFunLike.coe g₂ a))
                                                    theorem Finsupp.mapRange_sub {α : Type u_1} {G : Type u_9} {H : Type u_10} [SubNegZeroMonoid G] [SubNegZeroMonoid H] {f : GH} {hf : Eq (f 0) 0} (hf' : ∀ (x y : G), Eq (f (HSub.hSub x y)) (HSub.hSub (f x) (f y))) (v₁ v₂ : Finsupp α G) :
                                                    Eq (mapRange f hf (HSub.hSub v₁ v₂)) (HSub.hSub (mapRange f hf v₁) (mapRange f hf v₂))
                                                    theorem Finsupp.mapRange_sub' {α : Type u_1} {β : Type u_2} {G : Type u_9} {H : Type u_10} [AddGroup G] [SubtractionMonoid H] [FunLike β G H] [AddMonoidHomClass β G H] {f : β} (v₁ v₂ : Finsupp α G) :
                                                    Eq (mapRange (DFunLike.coe f) (HSub.hSub v₁ v₂)) (HSub.hSub (mapRange (DFunLike.coe f) v₁) (mapRange (DFunLike.coe f) v₂))
                                                    def Finsupp.instIntSMul {α : Type u_1} {G : Type u_9} [AddGroup G] :

                                                    Note the general SMul instance for Finsupp doesn't apply as is not distributive unless β i's addition is commutative.

                                                    Equations
                                                    Instances For
                                                      def Finsupp.instAddGroup {α : Type u_1} {G : Type u_9} [AddGroup G] :
                                                      Equations
                                                      • One or more equations did not get rendered due to their size.
                                                      Instances For
                                                        def Finsupp.instAddCommGroup {α : Type u_1} {G : Type u_9} [AddCommGroup G] :
                                                        Equations
                                                        Instances For
                                                          theorem Finsupp.support_neg {α : Type u_1} {G : Type u_9} [AddGroup G] (f : Finsupp α G) :