Scalar multiplication by finitely supported functions. #
Given sets G and P, with a left-cancellative vector-addition of G on P, we define an
antidiagonal function that assigns, for any element a in P, finite subset s of G, and subset
t in P, the Set of all pairs of an element in s and an element in t that vector-add to
a. When R is a ring and V is an R-module, we obtain a convolution-type action of the ring of
finitely supported R-valued functions on G on the space of V-valued functions on P.
Definitions #
- Finsupp.vaddAntidiagonal : The finset of pairs that vector-add to a given element.
theorem
Finsupp.finite_vaddAntidiagonal
{G : Type u_1}
{P : Type u_2}
{R : Type u_4}
{V : Type u_7}
[VAdd G P]
[IsLeftCancelVAdd G P]
[Zero R]
[Zero V]
(f : G →₀ R)
(x : P → V)
(p : P)
:
((↑f.support).vaddAntidiagonal (Function.support x) p).Finite
def
Finsupp.vaddAntidiagonal
{G : Type u_1}
{P : Type u_2}
{R : Type u_4}
{V : Type u_7}
[VAdd G P]
[IsLeftCancelVAdd G P]
[Zero R]
[Zero V]
(f : G →₀ R)
(x : P → V)
(p : P)
:
The finset of pairs that vector-add to a given element.
Equations
- f.vaddAntidiagonal x p = ⋯.toFinset
Instances For
def
Finsupp.instSMulForallOfIsLeftCancelVAddOfSMulWithZero
{G : Type u_1}
{P : Type u_2}
{R : Type u_4}
{V : Type u_7}
[VAdd G P]
[IsLeftCancelVAdd G P]
[Zero R]
[AddCommMonoid V]
[SMulWithZero R V]
:
A convolution-type scalar multiplication of finitely supported functions on formal functions.
Equations
- Finsupp.instSMulForallOfIsLeftCancelVAddOfSMulWithZero = { smul := fun (f : G →₀ R) (x : P → V) (p : P) => ∑ G_1 ∈ f.vaddAntidiagonal x p, f G_1.1 • x G_1.2 }
Instances For
theorem
Finsupp.smul_eq
{G : Type u_1}
{P : Type u_2}
{R : Type u_4}
{V : Type u_7}
[VAdd G P]
[IsLeftCancelVAdd G P]
[Zero R]
[AddCommMonoid V]
[SMulWithZero R V]
(f : G →₀ R)
(x : P → V)
(p : P)
: