Documentation

Mathlib.Data.Int.WithZero

WithZero #

In this file we provide some basic API lemmas for the WithZero construction and we define the morphism WithZeroMultInt.toNNReal.

Main Definitions #

Main Results #

Tags #

WithZero, multiplicative, nnreal

Given a nonzero e : ℝ≥0, this is the map ℤₘ₀ → ℝ≥0 sending 0 ↦ 0 and x ↦ e^(WithZero.unzero hx).toAdd when x ≠ 0 as a MonoidWithZeroHom.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem WithZeroMulInt.toNNReal_pos_apply {e : NNReal} (he : e 0) {x : WithZero (Multiplicative )} (hx : x = 0) :
    (toNNReal he) x = 0
    theorem WithZeroMulInt.toNNReal_neg_apply {e : NNReal} (he : e 0) {x : WithZero (Multiplicative )} (hx : x 0) :
    (toNNReal he) x = e ^ Multiplicative.toAdd (WithZero.unzero hx)
    theorem WithZeroMulInt.toNNReal_ne_zero {e : NNReal} {m : WithZero (Multiplicative )} (he : e 0) (hm : m 0) :
    (toNNReal he) m 0

    toNNReal sends nonzero elements to nonzero elements.

    theorem WithZeroMulInt.toNNReal_pos {e : NNReal} {m : WithZero (Multiplicative )} (he : e 0) (hm : m 0) :
    0 < (toNNReal he) m

    toNNReal sends nonzero elements to positive elements.

    The map toNNReal is strictly monotone whenever 1 < e.

    theorem WithZeroMulInt.toNNReal_eq_one_iff {e : NNReal} (m : WithZero (Multiplicative )) (he0 : e 0) (he1 : e 1) :
    (toNNReal he0) m = 1 m = 1
    theorem WithZeroMulInt.toNNReal_lt_one_iff {e : NNReal} {m : WithZero (Multiplicative )} (he : 1 < e) :
    (toNNReal ) m < 1 m < 1