Documentation

Mathlib.Data.List.Pairwise

Pairwise relations on a list #

This file provides basic results about List.Pairwise and List.pwFilter (definitions are in Data.List.Defs). Pairwise r [a 0, ..., a (n - 1)] means ∀ i j, i < j → r (a i) (a j). For example, Pairwise (≠) l means that all elements of l are distinct, and Pairwise (<) l means that l is strictly increasing. pwFilter r l is the list obtained by iteratively adding each element of l that doesn't break the pairwiseness of the list we have so far. It thus yields l' a maximal sublist of l such that Pairwise r l'.

Tags #

sorted, nodup

theorem List.pairwise_iff {α : Type u} (R : ααProp) (a✝ : List α) :
Pairwise R a✝ a✝ = [] ∃ (a : α), ∃ (l : List α), (∀ (a' : α), a' lR a a') Pairwise R l a✝ = a :: l

Pairwise #

theorem List.Pairwise.forall_of_forall {α : Type u_1} {R : ααProp} {l : List α} (H : Symmetric R) (H₁ : ∀ (x : α), x lR x x) (H₂ : Pairwise R l) ⦃x : α :
x l∀ ⦃y : α⦄, y lR x y
theorem List.Pairwise.forall {α : Type u_1} {R : ααProp} {l : List α} (hR : Symmetric R) (hl : Pairwise R l) ⦃a : α :
a l∀ ⦃b : α⦄, b la bR a b
theorem List.Pairwise.set_pairwise {α : Type u_1} {R : ααProp} {l : List α} (hl : Pairwise R l) (hr : Symmetric R) :
{x : α | x l}.Pairwise R
theorem List.pairwise_of_reflexive_of_forall_ne {α : Type u_1} {l : List α} {r : ααProp} (hr : Reflexive r) (h : ∀ (a : α), a l∀ (b : α), b la br a b) :

Pairwise filtering #

theorem List.Pairwise.pwFilter {α : Type u_1} {R : ααProp} [DecidableRel R] {l : List α} :
Pairwise R lpwFilter R l = l

Alias of the reverse direction of List.pwFilter_eq_self.