Documentation

Mathlib.Data.List.Permutation

Permutations of a list #

In this file we prove properties about List.Permutations, a list of all permutations of a list. It is defined in Data.List.Defs.

Order of the permutations #

Designed for performance, the order in which the permutations appear in List.Permutations is rather intricate and not very amenable to induction. That's why we also provide List.Permutations' as a less efficient but more straightforward way of listing permutations.

List.Permutations #

TODO. In the meantime, you can try decrypting the docstrings.

List.Permutations' #

The list of partitions is built by recursion. The permutations of [] are [[]]. Then, the permutations of a :: l are obtained by taking all permutations of l in order and adding a in all positions. Hence, to build [0, 1, 2, 3].permutations', it does

theorem List.permutationsAux2_fst {α : Type u_1} {β : Type u_2} (t : α) (ts : List α) (r : List β) (ys : List α) (f : List αβ) :
(List.permutationsAux2 t ts r ys f).1 = ys ++ ts
@[simp]
theorem List.permutationsAux2_snd_nil {α : Type u_1} {β : Type u_2} (t : α) (ts : List α) (r : List β) (f : List αβ) :
(List.permutationsAux2 t ts r [] f).2 = r
@[simp]
theorem List.permutationsAux2_snd_cons {α : Type u_1} {β : Type u_2} (t : α) (ts : List α) (r : List β) (y : α) (ys : List α) (f : List αβ) :
(List.permutationsAux2 t ts r (y :: ys) f).2 = f (t :: y :: ys ++ ts) :: (List.permutationsAux2 t ts r ys fun (x : List α) => f (y :: x)).2
theorem List.permutationsAux2_append {α : Type u_1} {β : Type u_2} (t : α) (ts : List α) (r : List β) (ys : List α) (f : List αβ) :
(List.permutationsAux2 t ts [] ys f).2 ++ r = (List.permutationsAux2 t ts r ys f).2

The r argument to permutationsAux2 is the same as appending.

theorem List.permutationsAux2_comp_append {α : Type u_1} {β : Type u_2} {t : α} {ts ys : List α} {r : List β} (f : List αβ) :
(List.permutationsAux2 t [] r ys fun (x : List α) => f (x ++ ts)).2 = (List.permutationsAux2 t ts r ys f).2

The ts argument to permutationsAux2 can be folded into the f argument.

theorem List.map_permutationsAux2' {α : Type u_1} {β : Type u_2} {α' : Type u_3} {β' : Type u_4} (g : αα') (g' : ββ') (t : α) (ts ys : List α) (r : List β) (f : List αβ) (f' : List α'β') (H : ∀ (a : List α), g' (f a) = f' (List.map g a)) :
List.map g' (List.permutationsAux2 t ts r ys f).2 = (List.permutationsAux2 (g t) (List.map g ts) (List.map g' r) (List.map g ys) f').2
theorem List.map_permutationsAux2 {α : Type u_1} {β : Type u_2} (t : α) (ts ys : List α) (f : List αβ) :
List.map f (List.permutationsAux2 t ts [] ys id).2 = (List.permutationsAux2 t ts [] ys f).2

The f argument to permutationsAux2 when r = [] can be eliminated.

theorem List.permutationsAux2_snd_eq {α : Type u_1} {β : Type u_2} (t : α) (ts : List α) (r : List β) (ys : List α) (f : List αβ) :
(List.permutationsAux2 t ts r ys f).2 = List.map (fun (x : List α) => f (x ++ ts)) (List.permutationsAux2 t [] [] ys id).2 ++ r

An expository lemma to show how all of ts, r, and f can be eliminated from permutationsAux2.

(permutationsAux2 t [] [] ys id).2, which appears on the RHS, is a list whose elements are produced by inserting t into every non-terminal position of ys in order. As an example:

#eval permutationsAux2 1 [] [] [2, 3, 4] id
-- [[1, 2, 3, 4], [2, 1, 3, 4], [2, 3, 1, 4]]
theorem List.map_map_permutationsAux2 {α : Type u_1} {α' : Type u_3} (g : αα') (t : α) (ts ys : List α) :
List.map (List.map g) (List.permutationsAux2 t ts [] ys id).2 = (List.permutationsAux2 (g t) (List.map g ts) [] (List.map g ys) id).2
theorem List.map_map_permutations'Aux {α : Type u_1} {β : Type u_2} (f : αβ) (t : α) (ts : List α) :
theorem List.permutations'Aux_eq_permutationsAux2 {α : Type u_1} (t : α) (ts : List α) :
List.permutations'Aux t ts = (List.permutationsAux2 t [] [ts ++ [t]] ts id).2
theorem List.mem_permutationsAux2 {α : Type u_1} {t : α} {ts ys l l' : List α} :
l' (List.permutationsAux2 t ts [] ys fun (x : List α) => l ++ x).2 ∃ (l₁ : List α) (l₂ : List α), l₂ [] ys = l₁ ++ l₂ l' = l ++ l₁ ++ t :: l₂ ++ ts
theorem List.mem_permutationsAux2' {α : Type u_1} {t : α} {ts ys l : List α} :
l (List.permutationsAux2 t ts [] ys id).2 ∃ (l₁ : List α) (l₂ : List α), l₂ [] ys = l₁ ++ l₂ l = l₁ ++ t :: l₂ ++ ts
theorem List.length_permutationsAux2 {α : Type u_1} {β : Type u_2} (t : α) (ts ys : List α) (f : List αβ) :
(List.permutationsAux2 t ts [] ys f).2.length = ys.length
theorem List.foldr_permutationsAux2 {α : Type u_1} (t : α) (ts : List α) (r L : List (List α)) :
List.foldr (fun (y : List α) (r : List (List α)) => (List.permutationsAux2 t ts r y id).2) r L = (L.flatMap fun (y : List α) => (List.permutationsAux2 t ts [] y id).2) ++ r
theorem List.mem_foldr_permutationsAux2 {α : Type u_1} {t : α} {ts : List α} {r L : List (List α)} {l' : List α} :
l' List.foldr (fun (y : List α) (r : List (List α)) => (List.permutationsAux2 t ts r y id).2) r L l' r ∃ (l₁ : List α) (l₂ : List α), l₁ ++ l₂ L l₂ [] l' = l₁ ++ t :: l₂ ++ ts
theorem List.length_foldr_permutationsAux2 {α : Type u_1} (t : α) (ts : List α) (r L : List (List α)) :
(List.foldr (fun (y : List α) (r : List (List α)) => (List.permutationsAux2 t ts r y id).2) r L).length = (List.map List.length L).sum + r.length
theorem List.length_foldr_permutationsAux2' {α : Type u_1} (t : α) (ts : List α) (r L : List (List α)) (n : ) (H : lL, l.length = n) :
(List.foldr (fun (y : List α) (r : List (List α)) => (List.permutationsAux2 t ts r y id).2) r L).length = n * L.length + r.length
@[simp]
theorem List.permutationsAux_nil {α : Type u_1} (is : List α) :
[].permutationsAux is = []
@[simp]
theorem List.permutationsAux_cons {α : Type u_1} (t : α) (ts is : List α) :
(t :: ts).permutationsAux is = List.foldr (fun (y : List α) (r : List (List α)) => (List.permutationsAux2 t ts r y id).2) (ts.permutationsAux (t :: is)) is.permutations
@[simp]
theorem List.permutations_nil {α : Type u_1} :
[].permutations = [[]]
theorem List.map_permutationsAux {α : Type u_1} {β : Type u_2} (f : αβ) (ts is : List α) :
List.map (List.map f) (ts.permutationsAux is) = (List.map f ts).permutationsAux (List.map f is)
theorem List.map_permutations {α : Type u_1} {β : Type u_2} (f : αβ) (ts : List α) :
List.map (List.map f) ts.permutations = (List.map f ts).permutations
theorem List.map_permutations' {α : Type u_1} {β : Type u_2} (f : αβ) (ts : List α) :
List.map (List.map f) ts.permutations' = (List.map f ts).permutations'
theorem List.permutationsAux_append {α : Type u_1} (is is' ts : List α) :
(is ++ ts).permutationsAux is' = List.map (fun (x : List α) => x ++ ts) (is.permutationsAux is') ++ ts.permutationsAux (is.reverse ++ is')
theorem List.permutations_append {α : Type u_1} (is ts : List α) :
(is ++ ts).permutations = List.map (fun (x : List α) => x ++ ts) is.permutations ++ ts.permutationsAux is.reverse
theorem List.perm_of_mem_permutationsAux {α : Type u_1} {ts is l : List α} :
l ts.permutationsAux isl.Perm (ts ++ is)
theorem List.perm_of_mem_permutations {α : Type u_1} {l₁ l₂ : List α} (h : l₁ l₂.permutations) :
l₁.Perm l₂
theorem List.length_permutationsAux {α : Type u_1} (ts is : List α) :
(ts.permutationsAux is).length + is.length.factorial = (ts.length + is.length).factorial
theorem List.length_permutations {α : Type u_1} (l : List α) :
l.permutations.length = l.length.factorial
theorem List.mem_permutations_of_perm_lemma {α : Type u_1} {is l : List α} (H : l.Perm ([] ++ is)(∃ (ts' : List α) (_ : ts'.Perm []), l = ts' ++ is) l is.permutationsAux []) :
l.Perm isl is.permutations
theorem List.mem_permutationsAux_of_perm {α : Type u_1} {ts is l : List α} :
l.Perm (is ++ ts)(∃ (is' : List α) (_ : is'.Perm is), l = is' ++ ts) l ts.permutationsAux is
@[simp]
theorem List.mem_permutations {α : Type u_1} {s t : List α} :
s t.permutations s.Perm t
theorem List.perm_permutations'Aux_comm {α : Type u_1} (a b : α) (l : List α) :
theorem List.Perm.permutations' {α : Type u_1} {s t : List α} (p : s.Perm t) :
s.permutations'.Perm t.permutations'
theorem List.permutations_perm_permutations' {α : Type u_1} (ts : List α) :
ts.permutations.Perm ts.permutations'
@[simp]
theorem List.mem_permutations' {α : Type u_1} {s t : List α} :
s t.permutations' s.Perm t
theorem List.Perm.permutations {α : Type u_1} {s t : List α} (h : s.Perm t) :
s.permutations.Perm t.permutations
@[simp]
theorem List.perm_permutations_iff {α : Type u_1} {s t : List α} :
s.permutations.Perm t.permutations s.Perm t
@[simp]
theorem List.perm_permutations'_iff {α : Type u_1} {s t : List α} :
s.permutations'.Perm t.permutations' s.Perm t
theorem List.getElem_permutations'Aux {α : Type u_1} (s : List α) (x : α) (n : ) (hn : n < (List.permutations'Aux x s).length) :
theorem List.get_permutations'Aux {α : Type u_1} (s : List α) (x : α) (n : ) (hn : n < (List.permutations'Aux x s).length) :
(List.permutations'Aux x s).get n, hn = List.insertIdx n x s
theorem List.count_permutations'Aux_self {α : Type u_1} [DecidableEq α] (l : List α) (x : α) :
List.count (x :: l) (List.permutations'Aux x l) = (List.takeWhile (fun (x_1 : α) => decide (x = x_1)) l).length + 1
@[simp]
theorem List.length_permutations'Aux {α : Type u_1} (s : List α) (x : α) :
(List.permutations'Aux x s).length = s.length + 1
@[deprecated]
theorem List.permutations'Aux_get_zero {α : Type u_1} (s : List α) (x : α) (hn : 0 < (List.permutations'Aux x s).length := ) :
(List.permutations'Aux x s).get 0, hn = x :: s
theorem List.nodup_permutations'Aux_of_not_mem {α : Type u_1} (s : List α) (x : α) (hx : xs) :
theorem List.nodup_permutations'Aux_iff {α : Type u_1} {s : List α} {x : α} :
(List.permutations'Aux x s).Nodup xs
theorem List.nodup_permutations {α : Type u_1} (s : List α) (hs : s.Nodup) :
s.permutations.Nodup
theorem List.permutations_take_two {α : Type u_1} (x y : α) (s : List α) :
List.take 2 (x :: y :: s).permutations = [x :: y :: s, y :: x :: s]
@[simp]
theorem List.nodup_permutations_iff {α : Type u_1} {s : List α} :
s.permutations.Nodup s.Nodup