Documentation

Mathlib.Data.List.ToFinsupp

Lists as finsupp #

Main definitions #

Main theorems #

Implementation details #

The functions defined here rely on a decidability predicate that each element in the list can be decidably determined to be not equal to zero or that one can decide one is out of the bounds of a list. For concretely defined lists that are made up of elements of decidable terms, this holds. More work will be needed to support lists over non-dec-eq types like , where the elements are beyond the dec-eq terms of casted values from ℕ, ℤ, ℚ.

def List.toFinsupp {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] :

Indexing into a l : List M, as a finitely-supported function, where the support are all the indices within the length of the list that index to a non-zero value. Indices beyond the end of the list are sent to 0.

This is a computable version of the Finsupp.onFinset construction.

Equations
Instances For
    theorem List.coe_toFinsupp {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] :
    (List.toFinsupp l) = fun (x : ) => List.getD l x 0
    @[simp]
    theorem List.toFinsupp_apply {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] (i : ) :
    theorem List.toFinsupp_support {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] :
    (List.toFinsupp l).support = Finset.filter (fun (x : ) => List.getD l x 0 0) (Finset.range (List.length l))
    theorem List.toFinsupp_apply_lt {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] (n : ) (hn : n < List.length l) :
    (List.toFinsupp l) n = List.get l { val := n, isLt := hn }
    theorem List.toFinsupp_apply_fin {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] (n : Fin (List.length l)) :
    @[deprecated]
    theorem List.toFinsupp_apply_lt' {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] (n : ) (hn : n < List.length l) :
    theorem List.toFinsupp_apply_le {M : Type u_1} [Zero M] (l : List M) [DecidablePred fun (x : ) => List.getD l x 0 0] (n : ) (hn : List.length l n) :
    @[simp]
    theorem List.toFinsupp_nil {M : Type u_1} [Zero M] [DecidablePred fun (i : ) => List.getD [] i 0 0] :
    theorem List.toFinsupp_singleton {M : Type u_1} [Zero M] (x : M) [DecidablePred fun (x_1 : ) => List.getD [x] x_1 0 0] :
    @[simp]
    theorem List.toFinsupp_cons_apply_zero {M : Type u_1} [Zero M] (x : M) (xs : List M) [DecidablePred fun (x_1 : ) => List.getD (x :: xs) x_1 0 0] :
    (List.toFinsupp (x :: xs)) 0 = x
    @[simp]
    theorem List.toFinsupp_cons_apply_succ {M : Type u_1} [Zero M] (x : M) (xs : List M) (n : ) [DecidablePred fun (x_1 : ) => List.getD (x :: xs) x_1 0 0] [DecidablePred fun (x : ) => List.getD xs x 0 0] :
    theorem List.toFinsupp_append {R : Type u_2} [AddZeroClass R] (l₁ : List R) (l₂ : List R) [DecidablePred fun (x : ) => List.getD (l₁ ++ l₂) x 0 0] [DecidablePred fun (x : ) => List.getD l₁ x 0 0] [DecidablePred fun (x : ) => List.getD l₂ x 0 0] :
    theorem List.toFinsupp_cons_eq_single_add_embDomain {R : Type u_2} [AddZeroClass R] (x : R) (xs : List R) [DecidablePred fun (x_1 : ) => List.getD (x :: xs) x_1 0 0] [DecidablePred fun (x : ) => List.getD xs x 0 0] :
    theorem List.toFinsupp_concat_eq_toFinsupp_add_single {R : Type u_2} [AddZeroClass R] (x : R) (xs : List R) [DecidablePred fun (i : ) => List.getD (xs ++ [x]) i 0 0] [DecidablePred fun (i : ) => List.getD xs i 0 0] :
    theorem List.toFinsupp_eq_sum_map_enum_single {R : Type u_2} [AddMonoid R] (l : List R) [DecidablePred fun (x : ) => List.getD l x 0 0] :
    List.toFinsupp l = List.sum (List.map (fun (nr : × R) => Finsupp.single nr.1 nr.2) (List.enum l))