Documentation

Mathlib.Data.Matroid.Sum

Sums of matroids #

The sum M of a collection M₁, M₂, .. of matroids is a matroid on the disjoint union of the ground sets of the summands, in which the independent sets are precisely the unions of independent sets of the summands.

We can ask for such a sum both for pairs and for arbitrary indexed collections of matroids, and we can also ask for the 'disjoint union' to be either set-theoretic or type-theoretic. To this end, we define five separate versions of the sum construction.

Main definitions #

Implementation details #

We only directly define a matroid for Matroid.sigma. All other versions of sum are defined indirectly, using Matroid.sigma and the API in Matroid.map.

def Matroid.sigma {ι : Type u_1} {α : ιType u_2} (M : (i : ι) → Matroid (α i)) :
Matroid ((i : ι) × α i)

The sum of an indexed collection of matroids, as a matroid on the sigma-type.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Matroid.sigma_indep_iff {ι : Type u_1} {α : ιType u_2} {M : (i : ι) → Matroid (α i)} {I : Set ((i : ι) × α i)} :
    (Matroid.sigma M).Indep I ∀ (i : ι), (M i).Indep (Sigma.mk i ⁻¹' I)
    @[simp]
    theorem Matroid.sigma_base_iff {ι : Type u_1} {α : ιType u_2} {M : (i : ι) → Matroid (α i)} {B : Set ((i : ι) × α i)} :
    (Matroid.sigma M).Base B ∀ (i : ι), (M i).Base (Sigma.mk i ⁻¹' B)
    @[simp]
    theorem Matroid.sigma_ground_eq {ι : Type u_1} {α : ιType u_2} {M : (i : ι) → Matroid (α i)} :
    (Matroid.sigma M).E = Set.univ.sigma fun (i : ι) => (M i).E
    @[simp]
    theorem Matroid.sigma_basis_iff {ι : Type u_1} {α : ιType u_2} {M : (i : ι) → Matroid (α i)} {I : Set ((i : ι) × α i)} {X : Set ((i : ι) × α i)} :
    (Matroid.sigma M).Basis I X ∀ (i : ι), (M i).Basis (Sigma.mk i ⁻¹' I) (Sigma.mk i ⁻¹' X)
    theorem Matroid.Finitary.sigma {ι : Type u_1} {α : ιType u_2} {M : (i : ι) → Matroid (α i)} (h : ∀ (i : ι), (M i).Finitary) :
    (Matroid.sigma M).Finitary
    def Matroid.sum' {α : Type u_1} {ι : Type u_2} (M : ιMatroid α) :
    Matroid (ι × α)

    The sum of an indexed family M : ι → Matroid α of matroids on the same type, as a matroid on the product type ι × α.

    Equations
    Instances For
      @[simp]
      theorem Matroid.sum'_indep_iff {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {I : Set (ι × α)} :
      (Matroid.sum' M).Indep I ∀ (i : ι), (M i).Indep (Prod.mk i ⁻¹' I)
      @[simp]
      theorem Matroid.sum'_ground_eq {α : Type u_1} {ι : Type u_2} (M : ιMatroid α) :
      (Matroid.sum' M).E = ⋃ (i : ι), Prod.mk i '' (M i).E
      @[simp]
      theorem Matroid.sum'_base_iff {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {B : Set (ι × α)} :
      (Matroid.sum' M).Base B ∀ (i : ι), (M i).Base (Prod.mk i ⁻¹' B)
      @[simp]
      theorem Matroid.sum'_basis_iff {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {I : Set (ι × α)} {X : Set (ι × α)} :
      (Matroid.sum' M).Basis I X ∀ (i : ι), (M i).Basis (Prod.mk i ⁻¹' I) (Prod.mk i ⁻¹' X)
      theorem Matroid.Finitary.sum' {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} (h : ∀ (i : ι), (M i).Finitary) :
      (Matroid.sum' M).Finitary
      def Matroid.disjointSigma {α : Type u_1} {ι : Type u_2} (M : ιMatroid α) (h : Pairwise (Disjoint on fun (i : ι) => (M i).E)) :

      The sum of an indexed collection of matroids on α with pairwise disjoint ground sets, as a matroid on α

      Equations
      Instances For
        @[simp]
        theorem Matroid.disjointSigma_ground_eq {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {h : Pairwise (Disjoint on fun (i : ι) => (M i).E)} :
        (Matroid.disjointSigma M h).E = ⋃ (i : ι), (M i).E
        @[simp]
        theorem Matroid.disjointSigma_indep_iff {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {h : Pairwise (Disjoint on fun (i : ι) => (M i).E)} {I : Set α} :
        (Matroid.disjointSigma M h).Indep I (∀ (i : ι), (M i).Indep (I (M i).E)) I ⋃ (i : ι), (M i).E
        @[simp]
        theorem Matroid.disjointSigma_base_iff {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {h : Pairwise (Disjoint on fun (i : ι) => (M i).E)} {B : Set α} :
        (Matroid.disjointSigma M h).Base B (∀ (i : ι), (M i).Base (B (M i).E)) B ⋃ (i : ι), (M i).E
        @[simp]
        theorem Matroid.disjointSigma_basis_iff {α : Type u_1} {ι : Type u_2} {M : ιMatroid α} {h : Pairwise (Disjoint on fun (i : ι) => (M i).E)} {I : Set α} {X : Set α} :
        (Matroid.disjointSigma M h).Basis I X (∀ (i : ι), (M i).Basis (I (M i).E) (X (M i).E)) I X X ⋃ (i : ι), (M i).E
        def Matroid.sum {α : Type u} {β : Type v} (M : Matroid α) (N : Matroid β) :
        Matroid (α β)

        The sum of two matroids as a matroid on the sum type.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem Matroid.sum_ground {α : Type u} {β : Type v} (M : Matroid α) (N : Matroid β) :
          (M.sum N).E = Sum.inl '' M.E Sum.inr '' N.E
          @[simp]
          theorem Matroid.sum_indep_iff {α : Type u} {β : Type v} (M : Matroid α) (N : Matroid β) {I : Set (α β)} :
          (M.sum N).Indep I M.Indep (Sum.inl ⁻¹' I) N.Indep (Sum.inr ⁻¹' I)
          @[simp]
          theorem Matroid.sum_base_iff {α : Type u} {β : Type v} {M : Matroid α} {N : Matroid β} {B : Set (α β)} :
          (M.sum N).Base B M.Base (Sum.inl ⁻¹' B) N.Base (Sum.inr ⁻¹' B)
          @[simp]
          theorem Matroid.sum_basis_iff {α : Type u} {β : Type v} {M : Matroid α} {N : Matroid β} {I : Set (α β)} {X : Set (α β)} :
          (M.sum N).Basis I X M.Basis (Sum.inl ⁻¹' I) (Sum.inl ⁻¹' X) N.Basis (Sum.inr ⁻¹' I) (Sum.inr ⁻¹' X)
          def Matroid.disjointSum {α : Type u_1} (M : Matroid α) (N : Matroid α) (h : Disjoint M.E N.E) :

          The sum of two matroids on α with disjoint ground sets, as a Matroid α.

          Equations
          Instances For
            @[simp]
            theorem Matroid.disjointSum_ground_eq {α : Type u_1} {M : Matroid α} {N : Matroid α} {h : Disjoint M.E N.E} :
            (M.disjointSum N h).E = M.E N.E
            @[simp]
            theorem Matroid.disjointSum_indep_iff {α : Type u_1} {M : Matroid α} {N : Matroid α} {h : Disjoint M.E N.E} {I : Set α} :
            (M.disjointSum N h).Indep I M.Indep (I M.E) N.Indep (I N.E) I M.E N.E
            @[simp]
            theorem Matroid.disjointSum_base_iff {α : Type u_1} {M : Matroid α} {N : Matroid α} {h : Disjoint M.E N.E} {B : Set α} :
            (M.disjointSum N h).Base B M.Base (B M.E) N.Base (B N.E) B M.E N.E
            @[simp]
            theorem Matroid.disjointSum_basis_iff {α : Type u_1} {M : Matroid α} {N : Matroid α} {h : Disjoint M.E N.E} {I : Set α} {X : Set α} :
            (M.disjointSum N h).Basis I X M.Basis (I M.E) (X M.E) N.Basis (I N.E) (X N.E) I X X M.E N.E
            theorem Matroid.Indep.eq_union_image_of_disjointSum {α : Type u_1} {M : Matroid α} {N : Matroid α} {h : Disjoint M.E N.E} {I : Set α} (hI : (M.disjointSum N h).Indep I) :
            ∃ (IM : Set α) (IN : Set α), M.Indep IM N.Indep IN Disjoint IM IN I = IM IN
            theorem Matroid.Base.eq_union_image_of_disjointSum {α : Type u_1} {M : Matroid α} {N : Matroid α} {h : Disjoint M.E N.E} {B : Set α} (hB : (M.disjointSum N h).Base B) :
            ∃ (BM : Set α) (BN : Set α), M.Base BM N.Base BN Disjoint BM BN B = BM BN