Documentation

Mathlib.Data.PNat.Basic

The positive natural numbers #

This file develops the type ℕ+ or PNat, the subtype of natural numbers that are positive. It is defined in Data.PNat.Defs, but most of the development is deferred to here so that Data.PNat.Defs can have very few imports.

@[simp]
theorem PNat.one_add_natPred (n : ℕ+) :
1 + n.natPred = n
@[simp]
theorem PNat.natPred_add_one (n : ℕ+) :
n.natPred + 1 = n
@[simp]
theorem PNat.natPred_lt_natPred {m n : ℕ+} :
m.natPred < n.natPred m < n
@[simp]
theorem PNat.natPred_le_natPred {m n : ℕ+} :
m.natPred n.natPred m n
@[simp]
theorem PNat.natPred_inj {m n : ℕ+} :
m.natPred = n.natPred m = n
@[simp]
theorem PNat.val_ofNat (n : ) [NeZero n] :
@[simp]
theorem PNat.mk_ofNat (n : ) (h : 0 < n) :
@[simp]
theorem Nat.succPNat_lt_succPNat {m n : } :
m.succPNat < n.succPNat m < n
@[simp]
theorem Nat.succPNat_le_succPNat {m n : } :
m.succPNat n.succPNat m n
@[simp]
theorem Nat.succPNat_inj {n m : } :
n.succPNat = m.succPNat n = m
@[simp]
theorem PNat.coe_inj {m n : ℕ+} :
m = n m = n

We now define a long list of structures on ℕ+ induced by similar structures on . Most of these behave in a completely obvious way, but there are a few things to be said about subtraction, division and powers.

@[simp]
theorem PNat.add_coe (m n : ℕ+) :
(m + n) = m + n

coe promoted to an AddHom, that is, a morphism which preserves addition.

Equations
Instances For

    The order isomorphism between ℕ and ℕ+ given by succ.

    Equations
    Instances For
      theorem PNat.lt_add_one_iff {a b : ℕ+} :
      a < b + 1 a b
      theorem PNat.add_one_le_iff {a b : ℕ+} :
      a + 1 b a < b
      @[simp]
      theorem PNat.bot_eq_one :
      = 1
      def PNat.caseStrongInductionOn {p : ℕ+Sort u_1} (a : ℕ+) (hz : p 1) (hi : (n : ℕ+) → ((m : ℕ+) → m np m)p (n + 1)) :
      p a

      Strong induction on ℕ+, with n = 1 treated separately.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        def PNat.recOn (n : ℕ+) {p : ℕ+Sort u_1} (one : p 1) (succ : (n : ℕ+) → p np (n + 1)) :
        p n

        An induction principle for ℕ+: it takes values in Sort*, so it applies also to Types, not only to Prop.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem PNat.recOn_one {p : ℕ+Sort u_1} (one : p 1) (succ : (n : ℕ+) → p np (n + 1)) :
          recOn 1 one succ = one
          @[simp]
          theorem PNat.recOn_succ (n : ℕ+) {p : ℕ+Sort u_1} (one : p 1) (succ : (n : ℕ+) → p np (n + 1)) :
          (n + 1).recOn one succ = succ n (n.recOn one succ)
          @[simp]
          theorem PNat.mul_coe (m n : ℕ+) :
          (m * n) = m * n

          PNat.coe promoted to a MonoidHom.

          Equations
          Instances For
            @[simp]
            theorem PNat.le_one_iff {n : ℕ+} :
            n 1 n = 1
            theorem PNat.lt_add_left (n m : ℕ+) :
            n < m + n
            theorem PNat.lt_add_right (n m : ℕ+) :
            n < n + m
            @[simp]
            theorem PNat.pow_coe (m : ℕ+) (n : ) :
            (m ^ n) = m ^ n
            theorem PNat.one_lt_of_lt {a b : ℕ+} (hab : a < b) :
            1 < b

            b is greater one if any a is less than b

            theorem PNat.add_one (a : ℕ+) :
            a + 1 = (↑a).succPNat
            theorem PNat.lt_succ_self (a : ℕ+) :
            a < (↑a).succPNat

            Subtraction a - b is defined in the obvious way when a > b, and by a - b = 1 if a ≤ b.

            Equations
            theorem PNat.sub_coe (a b : ℕ+) :
            (a - b) = if b < a then a - b else 1
            theorem PNat.sub_le (a b : ℕ+) :
            a - b a
            theorem PNat.le_sub_one_of_lt {a b : ℕ+} (hab : a < b) :
            a b - 1
            theorem PNat.add_sub_of_lt {a b : ℕ+} :
            a < ba + (b - a) = b
            theorem PNat.sub_add_of_lt {a b : ℕ+} (h : b < a) :
            a - b + b = a
            @[simp]
            theorem PNat.add_sub {a b : ℕ+} :
            a + b - b = a
            theorem PNat.exists_eq_succ_of_ne_one {n : ℕ+} :
            n 1∃ (k : ℕ+), n = k + 1

            If n : ℕ+ is different from 1, then it is the successor of some k : ℕ+.

            theorem PNat.modDivAux_spec (k : ℕ+) (r q : ) :
            ¬(r = 0 q = 0)(k.modDivAux r q).1 + k * (k.modDivAux r q).2 = r + k * q

            Lemmas with div, dvd and mod operations

            theorem PNat.mod_add_div (m k : ℕ+) :
            (m.mod k) + k * m.div k = m
            theorem PNat.div_add_mod (m k : ℕ+) :
            k * m.div k + (m.mod k) = m
            theorem PNat.mod_add_div' (m k : ℕ+) :
            (m.mod k) + m.div k * k = m
            theorem PNat.div_add_mod' (m k : ℕ+) :
            m.div k * k + (m.mod k) = m
            theorem PNat.mod_le (m k : ℕ+) :
            m.mod k m m.mod k k
            theorem PNat.dvd_iff {k m : ℕ+} :
            k m k m
            theorem PNat.dvd_iff' {k m : ℕ+} :
            k m m.mod k = k
            theorem PNat.le_of_dvd {m n : ℕ+} :
            m nm n
            theorem PNat.mul_div_exact {m k : ℕ+} (h : k m) :
            k * m.divExact k = m
            theorem PNat.dvd_antisymm {m n : ℕ+} :
            m nn mm = n
            theorem PNat.dvd_one_iff (n : ℕ+) :
            n 1 n = 1
            theorem PNat.pos_of_div_pos {n : ℕ+} {a : } (h : a n) :
            0 < a