Floor Function for Rational Numbers #
Summary #
We define the FloorRing
instance on ℚ
. Some technical lemmas relating floor
to integer
division and modulo arithmetic are derived as well as some simple inequalities.
Tags #
rat, rationals, ℚ, floor
@[deprecated Rat.floor_intCast_div_natCast]
Alias of Rat.floor_intCast_div_natCast
.
@[simp]
@[simp]
theorem
Rat.isInt_intFloor_ofIsRat
{α : Type u_1}
[LinearOrderedField α]
[FloorRing α]
(r : α)
(n : ℤ)
(d : ℕ)
:
Mathlib.Meta.NormNum.IsRat r n d → Mathlib.Meta.NormNum.IsInt ⌊r⌋ (n / ↑d)
theorem
Rat.isInt_intCeil_ofIsRat
{α : Type u_1}
[LinearOrderedField α]
[FloorRing α]
(r : α)
(n : ℤ)
(d : ℕ)
:
Mathlib.Meta.NormNum.IsRat r n d → Mathlib.Meta.NormNum.IsInt ⌈r⌉ (-(-n / ↑d))