Documentation

Mathlib.Data.Set.PowersetCard

Combinations #

Combinations in a type are finite subsets of given cardinality.

def Set.powersetCard (α : Type u_1) (n : ) :
Set (Finset α)

The type of combinations of n elements of a type α.

See also Finset.powersetCard.

Equations
Instances For
    @[simp]
    theorem Set.powersetCard.mem_iff {α : Type u_1} {n : } {s : Finset α} :
    @[simp]
    theorem Set.powersetCard.coe_coe {α : Type u_1} {n : } {s : (powersetCard α n)} :
    s = s
    theorem Set.powersetCard.mem_coe_iff {α : Type u_1} {n : } {s : (powersetCard α n)} {a : α} :
    a s a s
    @[simp]
    theorem Set.powersetCard.card_eq {α : Type u_1} {n : } (s : (powersetCard α n)) :
    (↑s).card = n
    @[simp]
    theorem Set.powersetCard.ncard_eq {α : Type u_1} {n : } (s : (powersetCard α n)) :
    (↑s).ncard = n
    theorem Set.powersetCard.coe_nonempty_iff {α : Type u_1} {n : } {s : (powersetCard α n)} :
    (↑s).Nonempty 1 n
    theorem Set.powersetCard.coe_nontrivial_iff {α : Type u_1} {n : } {s : (powersetCard α n)} :
    (↑s).Nontrivial 1 < n
    theorem Set.powersetCard.eq_iff_subset {α : Type u_1} {n : } {s t : (powersetCard α n)} :
    s = t s t
    theorem Set.powersetCard.exists_mem_notMem {α : Type u_1} {n : } (hn : 1 n) ( : n < ENat.card α) {a b : α} (hab : a b) :
    ∃ (s : (powersetCard α n)), a s bs
    theorem Set.powersetCard.exists_mem_notMem_iff_ne {α : Type u_1} {n : } (s t : (powersetCard α n)) :
    s t as, at
    def Set.powersetCard.map {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) :
    (powersetCard β n)

    The map powersetCard α n → powersetCard β n induced by embedding f : α ↪ β.

    Equations
    Instances For
      theorem Set.powersetCard.mem_map_iff_mem_range {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) (b : β) :
      b map n f s b f '' s
      @[simp]
      theorem Set.powersetCard.coe_map {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) :
      (map n f s) = f '' s
      @[simp]
      theorem Set.powersetCard.val_map {α : Type u_1} (n : ) {β : Type u_2} (f : α β) (s : (powersetCard α n)) :
      (map n f s) = Finset.map f s
      noncomputable def Set.powersetCard.ofSingleton {α : Type u_1} :
      α (powersetCard α 1)

      The equivalence sending a : α to the singleton {a}.

      Equations
      Instances For
        def Set.powersetCard.ofFinEmb (n : ) (β : Type u_2) (f : Fin n β) :
        (powersetCard β n)

        The image of an embedding f : Fin n ↪ β as an element of powersetCard β n.

        Equations
        Instances For
          @[simp]
          theorem Set.powersetCard.mem_ofFinEmb_iff_mem_range (n : ) (β : Type u_2) (f : Fin n β) (b : β) :
          b ofFinEmb n β f b range f
          @[simp]
          theorem Set.powersetCard.coe_ofFinEmb (n : ) (β : Type u_2) (f : Fin n β) :
          (ofFinEmb n β f) = range f
          @[simp]
          theorem Set.powersetCard.val_ofFinEmb (n : ) (β : Type u_2) (f : Fin n β) :
          def Set.powersetCard.compl {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } (hm : m + n = Fintype.card α) :
          (powersetCard α n) (powersetCard α m)

          Complement of Finsets as an equivalence on Set.powersetCard.

          Equations
          Instances For
            @[simp]
            theorem Set.powersetCard.coe_compl {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} :
            ((compl hm) s) = (↑s)
            @[simp]
            theorem Set.powersetCard.mem_compl {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} {s : (powersetCard α n)} {a : α} :
            a (compl hm) s as
            theorem Set.powersetCard.compl_symm {α : Type u_1} {n : } [DecidableEq α] [Fintype α] {m : } {hm : m + n = Fintype.card α} :
            (compl hm).symm = compl
            theorem Set.powersetCard.exist_mem_powersetCard_of_inf (α : Type u_1) (n : ) (h : 0 < n) [Infinite α] (a : α) :
            spowersetCard α n, a s
            instance Set.powersetCard.instInfinite (α : Type u_1) (n : ) [NeZero n] [Infinite α] :
            theorem Set.powersetCard.card (α : Type u_1) (n : ) :
            theorem Set.powersetCard.nontrivial {α : Type u_1} {n : } (h1 : 0 < n) (h2 : n < ENat.card α) :

            If 0 < n < ENat.card α, then powersetCard α n is nontrivial.

            theorem Set.powersetCard.nontrivial' {α : Type u_1} {n : } (h1 : 0 < n) (h2 : n < Nat.card α) :

            A variant of Set.powersetCard.nontrivial that uses Nat.card.

            @[simp]
            theorem Set.powersetCard.eq_empty_iff {α : Type u_1} {n : } [Finite α] :
            theorem Set.powersetCard.nontrivial_iff {α : Type u_1} {n : } [Finite α] :