Lexicographic order on a sigma type #
This defines the lexicographical order of two arbitrary relations on a sigma type and proves some
lemmas about PSigma.Lex
, which is defined in core Lean.
Given a relation in the index type and a relation on each summand, the lexicographical order on the
sigma type relates a
and b
if their summands are related or they are in the same summand and
related by the summand's relation.
See also #
Related files are:
Combinatorics.CoLex
: Colexicographic order on finite sets.Data.List.Lex
: Lexicographic order on lists.Data.Sigma.Order
: Lexicographic order onΣ i, α i
per say.Data.PSigma.Order
: Lexicographic order onΣ' i, α i
.Data.Prod.Lex
: Lexicographic order onα × β
. Can be thought of as the special case ofSigma.Lex
where all summands are the same
inductive
Sigma.Lex
{ι : Type u_1}
{α : ι → Type u_2}
(r : ι → ι → Prop)
(s : (i : ι) → α i → α i → Prop)
:
(i : ι) × α i → (i : ι) × α i → Prop
The lexicographical order on a sigma type. It takes in a relation on the index type and a
relation for each summand. a
is related to b
iff their summands are related or they are in the
same summand and are related through the summand's relation.
- left {ι : Type u_1} {α : ι → Type u_2} {r : ι → ι → Prop} {s : (i : ι) → α i → α i → Prop} {i j : ι} (a : α i) (b : α j) : r i j → Sigma.Lex r s ⟨i, a⟩ ⟨j, b⟩
- right {ι : Type u_1} {α : ι → Type u_2} {r : ι → ι → Prop} {s : (i : ι) → α i → α i → Prop} {i : ι} (a b : α i) : s i a b → Sigma.Lex r s ⟨i, a⟩ ⟨i, b⟩
Instances For
instance
Sigma.Lex.decidable
{ι : Type u_1}
{α : ι → Type u_2}
(r : ι → ι → Prop)
(s : (i : ι) → α i → α i → Prop)
[DecidableEq ι]
[DecidableRel r]
[(i : ι) → DecidableRel (s i)]
:
DecidableRel (Sigma.Lex r s)
Equations
- Sigma.Lex.decidable r s x✝¹ x✝ = decidable_of_decidable_of_iff ⋯
theorem
Sigma.lex_swap
{ι : Type u_1}
{α : ι → Type u_2}
{r : ι → ι → Prop}
{s : (i : ι) → α i → α i → Prop}
{a b : (i : ι) × α i}
:
Sigma.Lex (Function.swap r) s a b ↔ Sigma.Lex r (fun (i : ι) => Function.swap (s i)) b a
instance
Sigma.instIsAntisymmLexOfIsAsymm
{ι : Type u_1}
{α : ι → Type u_2}
{r : ι → ι → Prop}
{s : (i : ι) → α i → α i → Prop}
[IsAsymm ι r]
[∀ (i : ι), IsAntisymm (α i) (s i)]
:
IsAntisymm ((i : ι) × α i) (Sigma.Lex r s)
instance
Sigma.instIsTotalLexOfIsTrichotomous
{ι : Type u_1}
{α : ι → Type u_2}
{r : ι → ι → Prop}
{s : (i : ι) → α i → α i → Prop}
[IsTrichotomous ι r]
[∀ (i : ι), IsTotal (α i) (s i)]
:
instance
Sigma.instIsTrichotomousLex
{ι : Type u_1}
{α : ι → Type u_2}
{r : ι → ι → Prop}
{s : (i : ι) → α i → α i → Prop}
[IsTrichotomous ι r]
[∀ (i : ι), IsTrichotomous (α i) (s i)]
:
IsTrichotomous ((i : ι) × α i) (Sigma.Lex r s)
theorem
PSigma.lex_iff
{ι : Sort u_1}
{α : ι → Sort u_2}
{r : ι → ι → Prop}
{s : (i : ι) → α i → α i → Prop}
{a b : (i : ι) ×' α i}
:
PSigma.Lex r s a b ↔ r a.fst b.fst ∨ ∃ (h : a.fst = b.fst), s b.fst (h ▸ a.snd) b.snd
instance
PSigma.Lex.decidable
{ι : Sort u_1}
{α : ι → Sort u_2}
(r : ι → ι → Prop)
(s : (i : ι) → α i → α i → Prop)
[DecidableEq ι]
[DecidableRel r]
[(i : ι) → DecidableRel (s i)]
:
DecidableRel (PSigma.Lex r s)
Equations
- PSigma.Lex.decidable r s x✝¹ x✝ = decidable_of_decidable_of_iff ⋯
theorem
PSigma.Lex.mono
{ι : Sort u_1}
{α : ι → Sort u_2}
{r₁ r₂ : ι → ι → Prop}
{s₁ s₂ : (i : ι) → α i → α i → Prop}
(hr : ∀ (a b : ι), r₁ a b → r₂ a b)
(hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b)
{a b : (i : ι) ×' α i}
(h : PSigma.Lex r₁ s₁ a b)
:
PSigma.Lex r₂ s₂ a b
theorem
PSigma.Lex.mono_left
{ι : Sort u_1}
{α : ι → Sort u_2}
{r₁ r₂ : ι → ι → Prop}
{s : (i : ι) → α i → α i → Prop}
(hr : ∀ (a b : ι), r₁ a b → r₂ a b)
{a b : (i : ι) ×' α i}
(h : PSigma.Lex r₁ s a b)
:
PSigma.Lex r₂ s a b
theorem
PSigma.Lex.mono_right
{ι : Sort u_1}
{α : ι → Sort u_2}
{r : ι → ι → Prop}
{s₁ s₂ : (i : ι) → α i → α i → Prop}
(hs : ∀ (i : ι) (a b : α i), s₁ i a b → s₂ i a b)
{a b : (i : ι) ×' α i}
(h : PSigma.Lex r s₁ a b)
:
PSigma.Lex r s₂ a b