Documentation

Mathlib.Dynamics.PeriodicPts.Lemmas

Extra lemmas about periodic points #

theorem Function.directed_ptsOfPeriod_pNat {α : Type u_1} (f : αα) :
Directed (fun (x1 x2 : Set α) => x1 x2) fun (n : ℕ+) => ptsOfPeriod f n
theorem Function.bijOn_periodicPts {α : Type u_1} (f : αα) :
theorem Function.minimalPeriod_eq_prime {α : Type u_1} {f : αα} {x : α} {p : } [hp : Fact (Nat.Prime p)] (hper : IsPeriodicPt f p x) (hfix : ¬IsFixedPt f x) :
theorem Function.minimalPeriod_eq_prime_pow {α : Type u_1} {f : αα} {x : α} {p k : } [hp : Fact (Nat.Prime p)] (hk : ¬IsPeriodicPt f (p ^ k) x) (hk1 : IsPeriodicPt f (p ^ (k + 1)) x) :
minimalPeriod f x = p ^ (k + 1)
theorem Function.Commute.minimalPeriod_of_comp_dvd_mul {α : Type u_1} {f : αα} {x : α} {g : αα} (h : Function.Commute f g) :
theorem Function.Commute.minimalPeriod_of_comp_eq_mul_of_coprime {α : Type u_1} {f : αα} {x : α} {g : αα} (h : Function.Commute f g) (hco : (minimalPeriod f x).Coprime (minimalPeriod g x)) :
theorem Function.minimalPeriod_prod_map {α : Type u_1} {β : Type u_2} (f : αα) (g : ββ) (x : α × β) :
minimalPeriod (Prod.map f g) x = (minimalPeriod f x.1).lcm (minimalPeriod g x.2)
theorem Function.minimalPeriod_fst_dvd {α : Type u_1} {β : Type u_2} {f : αα} {g : ββ} {x : α × β} :
theorem Function.minimalPeriod_snd_dvd {α : Type u_1} {β : Type u_2} {f : αα} {g : ββ} {x : α × β} :