Basic results about relative perfect closure #
This file contains basic results about relative perfect closures.
Main definitions #
perfectClosure
: the relative perfect closure ofF
inE
, it consists of the elementsx
ofE
such that there exists a natural numbern
such thatx ^ (ringExpChar F) ^ n
is contained inF
, whereringExpChar F
is the exponential characteristic ofF
. It is also the maximal purely inseparable subextension ofE / F
(le_perfectClosure_iff
).
Main results #
le_perfectClosure_iff
: an intermediate field ofE / F
is contained in the relative perfect closure ofF
inE
if and only if it is purely inseparable overF
.perfectClosure.perfectRing
,perfectClosure.perfectField
: ifE
is a perfect field, then the (relative) perfect closureperfectClosure F E
is perfect.IntermediateField.isPurelyInseparable_adjoin_iff_pow_mem
: ifF
is of exponential characteristicq
, thenF(S) / F
is a purely inseparable extension if and only if for anyx ∈ S
,x ^ (q ^ n)
is contained inF
for somen : ℕ
.
Tags #
separable degree, degree, separable closure, purely inseparable
The relative perfect closure of F
in E
, consists of the elements x
of E
such that there
exists a natural number n
such that x ^ (ringExpChar F) ^ n
is contained in F
, where
ringExpChar F
is the exponential characteristic of F
. It is also the maximal purely inseparable
subextension of E / F
(le_perfectClosure_iff
).
Equations
- One or more equations did not get rendered due to their size.
Instances For
The relative perfect closure of F
in E
is purely inseparable over F
.
The relative perfect closure of F
in E
is algebraic over F
.
If E / F
is separable, then the perfect closure of F
in E
is equal to F
. Note that
the converse is not necessarily true (see https://math.stackexchange.com/a/3009197)
even when E / F
is algebraic.
An intermediate field of E / F
is contained in the relative perfect closure of F
in E
if it is purely inseparable over F
.
An intermediate field of E / F
is contained in the relative perfect closure of F
in E
if and only if it is purely inseparable over F
.
If i
is an F
-algebra homomorphism from E
to K
, then i x
is contained in
perfectClosure F K
if and only if x
is contained in perfectClosure F E
.
If i
is an F
-algebra homomorphism from E
to K
, then the preimage of perfectClosure F K
under the map i
is equal to perfectClosure F E
.
If i
is an F
-algebra homomorphism from E
to K
, then the image of perfectClosure F E
under the map i
is contained in perfectClosure F K
.
If i
is an F
-algebra isomorphism of E
and K
, then the image of perfectClosure F E
under the map i
is equal to in perfectClosure F K
.
If E
and K
are isomorphic as F
-algebras, then perfectClosure F E
and
perfectClosure F K
are also isomorphic as F
-algebras.
Equations
Instances For
Alias of perfectClosure.algEquivOfAlgEquiv
.
If E
and K
are isomorphic as F
-algebras, then perfectClosure F E
and
perfectClosure F K
are also isomorphic as F
-algebras.
Instances For
If E
is a perfect field of exponential characteristic p
, then the (relative) perfect closure
perfectClosure F E
is perfect.
If E
is a perfect field, then the (relative) perfect closure
perfectClosure F E
is perfect.
If F
is of exponential characteristic q
, then F⟮x⟯ / F
is a purely inseparable extension
if and only if x ^ (q ^ n)
is contained in F
for some n : ℕ
.
If F
is of exponential characteristic q
, then F(S) / F
is a purely inseparable extension
if and only if for any x ∈ S
, x ^ (q ^ n)
is contained in F
for some n : ℕ
.
A compositum of two purely inseparable extensions is purely inseparable.
A compositum of purely inseparable extensions is purely inseparable.
If F
is a field of exponential characteristic q
, F(S) / F
is separable, then
F(S) = F(S ^ (q ^ n))
for any natural number n
.
If E / F
is a separable field extension of exponential characteristic q
, then
F(S) = F(S ^ (q ^ n))
for any subset S
of E
and any natural number n
.
If E / F
is a separable field extension of exponential characteristic q
, then
F(S) = F(S ^ q)
for any subset S
of E
.
If F
is a field of exponential characteristic q
, a : E
is separable over F
, then
F⟮a⟯ = F⟮a ^ q ^ n⟯
for any natural number n
.
If E / F
is a separable field extension of exponential characteristic q
, then
F⟮a⟯ = F⟮a ^ q ^ n⟯
for any subset a : E
and any natural number n
.
If F
is a field of exponential characteristic q
, a : E
is separable over F
, then
F⟮a⟯ = F⟮a ^ q⟯
.
If E / F
is a separable field extension of exponential characteristic q
, then
F⟮a⟯ = F⟮a ^ q⟯
for any a : E
.
If E / F
is a separable extension of exponential characteristic q
, if { u_i }
is a family
of elements of E
which F
-linearly spans E
, then { u_i ^ (q ^ n) }
also F
-linearly spans
E
for any natural number n
.
If E / F
is a separable extension of exponential characteristic q
, if { u_i }
is a
family of elements of E
which is F
-linearly independent, then { u_i ^ (q ^ n) }
is also
F
-linearly independent for any natural number n
.
If E / F
is a field extension of exponential characteristic q
, if { u_i }
is a
family of separable elements of E
which is F
-linearly independent, then { u_i ^ (q ^ n) }
is also F
-linearly independent for any natural number n
.
If E / F
is a separable extension of exponential characteristic q
, if { u_i }
is an
F
-basis of E
, then { u_i ^ (q ^ n) }
is also an F
-basis of E
for any natural number n
.
Equations
- Basis.mapPowExpCharPowOfIsSeparable q n b = Basis.mk ⋯ ⋯
Instances For
If E / F
is a separable extension, E
is perfect, then F
is also prefect.
If E
is an algebraic closure of F
, then F
is perfect if and only if E / F
is
separable.