Documentation

Mathlib.Geometry.Euclidean.Sphere.Tangent

Tangency for spheres. #

This file defines notions of spheres being tangent to affine subspaces and other spheres.

Main definitions #

The affine subspace as is tangent to the sphere s at the point p.

Instances For
    theorem EuclideanGeometry.Sphere.IsTangentAt.inner_left_eq_zero_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p : P} {as : AffineSubspace P} (h : s.IsTangentAt p as) {x : P} (hx : x as) :
    inner (x -ᵥ p) (p -ᵥ s.center) = 0
    theorem EuclideanGeometry.Sphere.IsTangentAt.inner_right_eq_zero_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p : P} {as : AffineSubspace P} (h : s.IsTangentAt p as) {x : P} (hx : x as) :
    inner (p -ᵥ s.center) (x -ᵥ p) = 0
    theorem EuclideanGeometry.Sphere.IsTangentAt.eq_of_isTangentAt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p q : P} {as : AffineSubspace P} (hp : s.IsTangentAt p as) (hq : s.IsTangentAt q as) :
    p = q
    theorem EuclideanGeometry.Sphere.IsTangentAt.dist_sq_eq_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p q : P} {as : AffineSubspace P} (h : s.IsTangentAt p as) (hq : q as) :
    dist q s.center ^ 2 = s.radius ^ 2 + dist q p ^ 2
    theorem EuclideanGeometry.Sphere.IsTangentAt.eq_of_mem_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p q : P} {as : AffineSubspace P} (h : s.IsTangentAt p as) (hs : q s) (has : q as) :
    q = p
    theorem EuclideanGeometry.Sphere.IsTangentAt.dist_eq_of_mem_of_mem {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {p₁ p₂ q : P} {as₁ as₂ : AffineSubspace P} (h₁ : s.IsTangentAt p₁ as₁) (h₂ : s.IsTangentAt p₂ as₂) (hq_mem₁ : q as₁) (hq_mem₂ : q as₂) :
    dist q p₁ = dist q p₂

    If two tangent lines to a sphere pass through the same point q, then the distances from q to the tangent points are equal.

    theorem EuclideanGeometry.Sphere.IsTangentAt.radius_lt_dist_center {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {as : AffineSubspace P} {p q : P} (h : s.IsTangentAt p as) (hq : q as) (hqp : q p) :

    The affine subspace as is tangent to the sphere s at some point.

    Equations
    Instances For
      theorem EuclideanGeometry.Sphere.IsTangent.notMem_of_dist_lt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s : Sphere P} {as : AffineSubspace P} (h : s.IsTangent as) {p : P} (hp : dist p s.center < s.radius) :
      pas

      The set of all maximal tangent spaces to the sphere s.

      Equations
      Instances For

        The set of all maximal tangent spaces to the sphere s containing the point p.

        Equations
        Instances For

          The set of all maximal common tangent spaces to the spheres s₁ and s₂.

          Equations
          Instances For

            The set of all maximal common internal tangent spaces to the spheres s₁ and s₂: tangent spaces containing a point weakly between the centers of the spheres.

            Equations
            Instances For

              The set of all maximal common external tangent spaces to the spheres s₁ and s₂: tangent spaces not containing a point strictly between the centers of the spheres. (In the degenerate case where the two spheres are the same sphere with radius 0, the space is considered both an internal and an external common tangent.)

              Equations
              Instances For
                theorem EuclideanGeometry.Sphere.mem_commonIntTangents_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {as : AffineSubspace P} {s₁ s₂ : Sphere P} :
                as s₁.commonIntTangents s₂ as s₁.commonTangents s₂ pas, Wbtw s₁.center p s₂.center
                theorem EuclideanGeometry.Sphere.mem_commonExtTangents_iff {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {as : AffineSubspace P} {s₁ s₂ : Sphere P} :
                as s₁.commonExtTangents s₂ as s₁.commonTangents s₂ pas, ¬Sbtw s₁.center p s₂.center
                structure EuclideanGeometry.Sphere.IsExtTangentAt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] (s₁ s₂ : Sphere P) (p : P) :

                The spheres s₁ and s₂ are externally tangent at the point p.

                Instances For
                  theorem EuclideanGeometry.Sphere.IsExtTangentAt.symm {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s₁ s₂ : Sphere P} {p : P} (h : s₁.IsExtTangentAt s₂ p) :
                  s₂.IsExtTangentAt s₁ p
                  theorem EuclideanGeometry.Sphere.isExtTangentAt_comm {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s₁ s₂ : Sphere P} {p : P} :
                  s₁.IsExtTangentAt s₂ p s₂.IsExtTangentAt s₁ p
                  structure EuclideanGeometry.Sphere.IsIntTangentAt {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] (s₁ s₂ : Sphere P) (p : P) :

                  The sphere s₁ is internally tangent to the sphere s₂ at the point p (that is, s₁ lies inside s₂ and is tangent to it at that point). This includes the degenerate case where the spheres are the same.

                  Instances For

                    The spheres s₁ and s₂ are externally tangent at some point.

                    Equations
                    Instances For

                      The sphere s₁ is internally tangent to the sphere s₂ at some point.

                      Equations
                      Instances For
                        theorem EuclideanGeometry.Sphere.IsExtTangentAt.isExtTangent {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s₁ s₂ : Sphere P} {p : P} (h : s₁.IsExtTangentAt s₂ p) :
                        s₁.IsExtTangent s₂
                        theorem EuclideanGeometry.Sphere.IsIntTangentAt.isIntTangent {V : Type u_1} {P : Type u_2} [NormedAddCommGroup V] [InnerProductSpace V] [MetricSpace P] [NormedAddTorsor V P] {s₁ s₂ : Sphere P} {p : P} (h : s₁.IsIntTangentAt s₂ p) :
                        s₁.IsIntTangent s₂