Documentation

Mathlib.Geometry.Manifold.VectorBundle.Tangent

Tangent bundles #

This file defines the tangent bundle as a smooth vector bundle.

Let M be a manifold with model I on (E, H). The tangent space TangentSpace I (x : M) has already been defined as a type synonym for E, and the tangent bundle TangentBundle I M as an abbrev of Bundle.TotalSpace E (TangentSpace I : M → Type _).

In this file, when M is smooth, we construct a smooth vector bundle structure on TangentBundle I M using the VectorBundleCore construction indexed by the charts of M with fibers E. Given two charts i, j : PartialHomeomorph M H, the coordinate change between i and j at a point x : M is the derivative of the composite

  I.symm   i.symm    j     I
E -----> H -----> M --> H --> E

within the set range I ⊆ E at I (i x) : E. This defines a smooth vector bundle TangentBundle with fibers TangentSpace.

Main definitions and results #

theorem contDiffOn_fderiv_coord_change {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (i j : (atlas H M)) :
ContDiffOn 𝕜 (↑) (fderivWithin 𝕜 (((↑j).extend I) ((↑i).extend I).symm) (Set.range I)) (((↑i).extend I).symm.trans ((↑j).extend I)).source

Auxiliary lemma for tangent spaces: the derivative of a coordinate change between two charts is smooth on its source.

def tangentBundleCore {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_6) [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] :
VectorBundleCore 𝕜 M E (atlas H M)

Let M be a smooth manifold with corners with model I on (E, H). Then tangentBundleCore I M is the vector bundle core for the tangent bundle over M. It is indexed by the atlas of M, with fiber E and its change of coordinates from the chart i to the chart j at point x : M is the derivative of the composite

  I.symm   i.symm    j     I
E -----> H -----> M --> H --> E

within the set range I ⊆ E at I (i x) : E.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem tangentBundleCore_coordChange {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_6) [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (i j : (atlas H M)) (x : M) :
    (tangentBundleCore I M).coordChange i j x = fderivWithin 𝕜 (((↑j).extend I) ((↑i).extend I).symm) (Set.range I) (((↑i).extend I) x)
    @[simp]
    theorem tangentBundleCore_indexAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_6) [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) :
    (tangentBundleCore I M).indexAt x = achart H x
    @[simp]
    theorem tangentBundleCore_baseSet {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (i : (atlas H M)) :
    (tangentBundleCore I M).baseSet i = (↑i).source
    theorem tangentBundleCore_coordChange_achart {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x x' z : M) :
    (tangentBundleCore I M).coordChange (achart H x) (achart H x') z = fderivWithin 𝕜 ((extChartAt I x') (extChartAt I x).symm) (Set.range I) ((extChartAt I x) z)
    @[reducible, inline]
    abbrev tangentCoordChange {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x y : M) :
    ME →L[𝕜] E

    In a manifold M, given two preferred charts indexed by x y : M, tangentCoordChange I x y is the family of derivatives of the corresponding change-of-coordinates map. It takes junk values outside the intersection of the sources of the two charts.

    Note that this definition takes advantage of the fact that tangentBundleCore has the same base sets as the preferred charts of the base manifold.

    Equations
    Instances For
      theorem tangentCoordChange_def {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {x y z : M} :
      tangentCoordChange I x y z = fderivWithin 𝕜 ((extChartAt I y) (extChartAt I x).symm) (Set.range I) ((extChartAt I x) z)
      theorem tangentCoordChange_self {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {x z : M} {v : E} (h : z (extChartAt I x).source) :
      (tangentCoordChange I x x z) v = v
      theorem tangentCoordChange_comp {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {w x y z : M} {v : E} (h : z (extChartAt I w).source (extChartAt I x).source (extChartAt I y).source) :
      (tangentCoordChange I x y z) ((tangentCoordChange I w x z) v) = (tangentCoordChange I w y z) v
      theorem hasFDerivWithinAt_tangentCoordChange {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {x y z : M} (h : z (extChartAt I x).source (extChartAt I y).source) :
      HasFDerivWithinAt ((extChartAt I y) (extChartAt I x).symm) (tangentCoordChange I x y z) (Set.range I) ((extChartAt I x) z)
      theorem continuousOn_tangentCoordChange {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x y : M) :
      ContinuousOn (tangentCoordChange I x y) ((extChartAt I x).source (extChartAt I y).source)
      Equations
      Equations
      theorem TangentBundle.chartAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (p : TangentBundle I M) :
      chartAt (ModelProd H E) p = ((tangentBundleCore I M).toFiberBundleCore.localTriv (achart H p.proj)).trans ((chartAt H p.proj).prod (PartialHomeomorph.refl E))
      theorem TangentBundle.chartAt_toPartialEquiv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (p : TangentBundle I M) :
      (chartAt (ModelProd H E) p).toPartialEquiv = ((tangentBundleCore I M).toFiberBundleCore.localTrivAsPartialEquiv (achart H p.proj)).trans ((chartAt H p.proj).prod (PartialEquiv.refl E))
      theorem TangentBundle.trivializationAt_eq_localTriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) :
      trivializationAt E (TangentSpace I) x = (tangentBundleCore I M).toFiberBundleCore.localTriv (achart H x)
      @[simp]
      theorem TangentBundle.trivializationAt_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) :
      (trivializationAt E (TangentSpace I) x).source = Bundle.TotalSpace.proj ⁻¹' (chartAt H x).source
      @[simp]
      theorem TangentBundle.trivializationAt_target {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) :
      (trivializationAt E (TangentSpace I) x).target = (chartAt H x).source ×ˢ Set.univ
      @[simp]
      theorem TangentBundle.trivializationAt_baseSet {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) :
      (trivializationAt E (TangentSpace I) x).baseSet = (chartAt H x).source
      theorem TangentBundle.trivializationAt_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) (z : TangentBundle I M) :
      (trivializationAt E (TangentSpace I) x) z = (z.proj, (fderivWithin 𝕜 (((chartAt H x).extend I) ((chartAt H z.proj).extend I).symm) (Set.range I) (((chartAt H z.proj).extend I) z.proj)) z.snd)
      @[simp]
      theorem TangentBundle.trivializationAt_fst {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x : M) (z : TangentBundle I M) :
      ((trivializationAt E (TangentSpace I) x) z).1 = z.proj
      @[simp]
      theorem TangentBundle.mem_chart_source_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (p q : TangentBundle I M) :
      p (chartAt (ModelProd H E) q).source p.proj (chartAt H q.proj).source
      @[simp]
      theorem TangentBundle.mem_chart_target_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (p : H × E) (q : TangentBundle I M) :
      p (chartAt (ModelProd H E) q).target p.1 (chartAt H q.proj).target
      @[simp]
      theorem TangentBundle.coe_chartAt_fst {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (p q : TangentBundle I M) :
      ((chartAt (ModelProd H E) q) p).1 = (chartAt H q.proj) p.proj
      @[simp]
      theorem TangentBundle.coe_chartAt_symm_fst {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (p : H × E) (q : TangentBundle I M) :
      ((chartAt (ModelProd H E) q).symm p).proj = (chartAt H q.proj).symm p.1
      @[simp]
      theorem TangentBundle.trivializationAt_continuousLinearMapAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {b₀ b : M} (hb : b (trivializationAt E (TangentSpace I) b₀).baseSet) :
      @[simp]
      theorem TangentBundle.trivializationAt_symmL {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {b₀ b : M} (hb : b (trivializationAt E (TangentSpace I) b₀).baseSet) :
      Trivialization.symmL 𝕜 (trivializationAt E (TangentSpace I) b₀) b = (tangentBundleCore I M).coordChange (achart H b₀) (achart H b) b
      @[simp]
      theorem TangentBundle.coordChange_model_space {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {F : Type u_8} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (b b' x : F) :
      (tangentBundleCore (modelWithCornersSelf 𝕜 F) F).coordChange (achart F b) (achart F b') x = 1
      instance tangentBundleCore.isSmooth {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] :
      (tangentBundleCore I M).IsSmooth I

      The tangent bundle to the model space #

      @[simp]
      theorem trivializationAt_model_space_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (p : TangentBundle I H) (x : H) :
      (trivializationAt E (TangentSpace I) x) p = (p.proj, p.snd)
      @[simp]
      theorem tangentBundle_model_space_chartAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (p : TangentBundle I H) :
      (chartAt (ModelProd H E) p).toPartialEquiv = (Bundle.TotalSpace.toProd H E).toPartialEquiv

      In the tangent bundle to the model space, the charts are just the canonical identification between a product type and a sigma type, a.k.a. TotalSpace.toProd.

      @[simp]
      theorem tangentBundle_model_space_coe_chartAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (p : TangentBundle I H) :
      @[simp]
      theorem tangentBundle_model_space_coe_chartAt_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (p : TangentBundle I H) :
      (chartAt (ModelProd H E) p).symm = (Bundle.TotalSpace.toProd H E).symm
      theorem tangentBundleCore_coordChange_model_space {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (x x' z : H) :
      (tangentBundleCore I H).coordChange (achart H x) (achart H x') z = ContinuousLinearMap.id 𝕜 E

      The canonical identification between the tangent bundle to the model space and the product, as a homeomorphism. For the diffeomorphism version, see tangentBundleModelSpaceDiffeomorph.

      Equations
      Instances For
        theorem contMDiff_snd_tangentBundle_modelSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] (H : Type u_4) [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {n : ℕ∞} :
        ContMDiff I.tangent (modelWithCornersSelf 𝕜 E) n fun (p : TangentBundle I H) => p.snd

        In the tangent bundle to the model space, the second projection is smooth.

        theorem contMDiffWithinAt_vectorSpace_iff_contDiffWithinAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {V : (x : E) → TangentSpace (modelWithCornersSelf 𝕜 E) x} {n : ℕ∞} {s : Set E} {x : E} :
        ContMDiffWithinAt (modelWithCornersSelf 𝕜 E) (modelWithCornersSelf 𝕜 E).tangent n (fun (x : E) => { proj := x, snd := V x }) s x ContDiffWithinAt 𝕜 (↑n) V s x

        A vector field on a vector space is smooth in the manifold sense iff it is smooth in the vector space sense

        theorem contMDiffAt_vectorSpace_iff_contDiffAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {V : (x : E) → TangentSpace (modelWithCornersSelf 𝕜 E) x} {n : ℕ∞} {x : E} :
        ContMDiffAt (modelWithCornersSelf 𝕜 E) (modelWithCornersSelf 𝕜 E).tangent n (fun (x : E) => { proj := x, snd := V x }) x ContDiffAt 𝕜 (↑n) V x

        A vector field on a vector space is smooth in the manifold sense iff it is smooth in the vector space sense

        theorem contMDiffOn_vectorSpace_iff_contDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {V : (x : E) → TangentSpace (modelWithCornersSelf 𝕜 E) x} {n : ℕ∞} {s : Set E} :
        ContMDiffOn (modelWithCornersSelf 𝕜 E) (modelWithCornersSelf 𝕜 E).tangent n (fun (x : E) => { proj := x, snd := V x }) s ContDiffOn 𝕜 (↑n) V s

        A vector field on a vector space is smooth in the manifold sense iff it is smooth in the vector space sense

        theorem contMDiff_vectorSpace_iff_contDiff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {V : (x : E) → TangentSpace (modelWithCornersSelf 𝕜 E) x} {n : ℕ∞} :
        (ContMDiff (modelWithCornersSelf 𝕜 E) (modelWithCornersSelf 𝕜 E).tangent n fun (x : E) => { proj := x, snd := V x }) ContDiff 𝕜 (↑n) V

        A vector field on a vector space is smooth in the manifold sense iff it is smooth in the vector space sense

        theorem inCoordinates_tangent_bundle_core_model_space {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (x₀ x : H) (y₀ y : H') (ϕ : E →L[𝕜] E') :

        The map inCoordinates for the tangent bundle is trivial on the model spaces

        def inTangentCoordinates {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {H' : Type u_5} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [SmoothManifoldWithCorners I' M'] {N : Type u_9} (f : NM) (g : NM') (ϕ : NE →L[𝕜] E') :
        NNE →L[𝕜] E'

        When ϕ x is a continuous linear map that changes vectors in charts around f x to vectors in charts around g x, inTangentCoordinates I I' f g ϕ x₀ x is a coordinate change of this continuous linear map that makes sense from charts around f x₀ to charts around g x₀ by composing it with appropriate coordinate changes. Note that the type of ϕ is more accurately Π x : N, TangentSpace I (f x) →L[𝕜] TangentSpace I' (g x). We are unfolding TangentSpace in this type so that Lean recognizes that the type of ϕ doesn't actually depend on f or g.

        This is the underlying function of the trivializations of the hom of (pullbacks of) tangent spaces.

        Equations
        Instances For
          theorem inTangentCoordinates_model_space {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {N : Type u_9} (f : NH) (g : NH') (ϕ : NE →L[𝕜] E') (x₀ : N) :
          inTangentCoordinates I I' f g ϕ x₀ = ϕ
          theorem inTangentCoordinates_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_4} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_5} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} {M : Type u_6} [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [SmoothManifoldWithCorners I' M'] {N : Type u_9} (f : NM) (g : NM') (ϕ : NE →L[𝕜] E') {x₀ x : N} (hx : f x (chartAt H (f x₀)).source) (hy : g x (chartAt H' (g x₀)).source) :
          inTangentCoordinates I I' f g ϕ x₀ x = ((tangentBundleCore I' M').coordChange (achart H' (g x)) (achart H' (g x₀)) (g x)).comp ((ϕ x).comp ((tangentBundleCore I M).coordChange (achart H (f x₀)) (achart H (f x)) (f x)))

          To write a linear map between tangent spaces in coordinates amounts to precomposing and postcomposing it with suitable coordinate changes. For a concrete version expressing the change of coordinates as derivatives of extended charts, see inTangentCoordinates_eq_mfderiv_comp.