Documentation

Mathlib.Geometry.Manifold.VectorField.LieBracket

Lie brackets of vector fields on manifolds #

We define the Lie bracket of two vector fields, denoted with VectorField.mlieBracket I V W x, as the pullback in the manifold of the corresponding notion in the model space (through extChartAt I x).

The main results are the following:

The Lie bracket of vector fields in manifolds #

def VectorField.mlieBracketWithin {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (I : ModelWithCorners ๐•œ E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (V W : (x : M) โ†’ TangentSpace I x) (s : Set M) (xโ‚€ : M) :
TangentSpace I xโ‚€

The Lie bracket of two vector fields in a manifold, within a set.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    def VectorField.mlieBracket {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (I : ModelWithCorners ๐•œ E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] (V W : (x : M) โ†’ TangentSpace I x) (xโ‚€ : M) :
    TangentSpace I xโ‚€

    The Lie bracket of two vector fields in a manifold.

    Equations
    Instances For
      theorem VectorField.mlieBracketWithin_def {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {V W : (x : M) โ†’ TangentSpace I x} :
      mlieBracketWithin I V W s = fun (xโ‚€ : M) => mpullback I (modelWithCornersSelf ๐•œ E) (โ†‘(extChartAt I xโ‚€)) (lieBracketWithin ๐•œ (mpullbackWithin (modelWithCornersSelf ๐•œ E) I (โ†‘(extChartAt I xโ‚€).symm) V (Set.range โ†‘I)) (mpullbackWithin (modelWithCornersSelf ๐•œ E) I (โ†‘(extChartAt I xโ‚€).symm) W (Set.range โ†‘I)) (โ†‘(extChartAt I xโ‚€).symm โปยน' s โˆฉ Set.range โ†‘I)) xโ‚€
      theorem VectorField.mlieBracketWithin_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {xโ‚€ : M} {V W : (x : M) โ†’ TangentSpace I x} :
      mlieBracketWithin I V W s xโ‚€ = (mfderiv I (modelWithCornersSelf ๐•œ E) (โ†‘(extChartAt I xโ‚€)) xโ‚€).inverse (lieBracketWithin ๐•œ (mpullbackWithin (modelWithCornersSelf ๐•œ E) I (โ†‘(extChartAt I xโ‚€).symm) V (Set.range โ†‘I)) (mpullbackWithin (modelWithCornersSelf ๐•œ E) I (โ†‘(extChartAt I xโ‚€).symm) W (Set.range โ†‘I)) (โ†‘(extChartAt I xโ‚€).symm โปยน' s โˆฉ Set.range โ†‘I) (โ†‘(extChartAt I xโ‚€) xโ‚€))
      theorem VectorField.mlieBracketWithin_eq_lieBracketWithin {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {V W : (x : E) โ†’ TangentSpace (modelWithCornersSelf ๐•œ E) x} {s : Set E} :
      mlieBracketWithin (modelWithCornersSelf ๐•œ E) V W s = lieBracketWithin ๐•œ V W s
      @[simp]
      theorem VectorField.mlieBracketWithin_univ {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {V W : (x : M) โ†’ TangentSpace I x} :
      theorem VectorField.mlieBracketWithin_eq_zero_of_eq_zero {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (hV : V x = 0) (hW : W x = 0) :
      mlieBracketWithin I V W s x = 0
      theorem VectorField.mlieBracketWithin_swap_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} :
      theorem VectorField.mlieBracketWithin_swap {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {V W : (x : M) โ†’ TangentSpace I x} :
      theorem VectorField.mlieBracket_swap_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W : (x : M) โ†’ TangentSpace I x} :
      mlieBracket I V W x = -mlieBracket I W V x
      theorem VectorField.mlieBracket_swap {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {V W : (x : M) โ†’ TangentSpace I x} :
      @[simp]
      theorem VectorField.mlieBracketWithin_self {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {V : (x : M) โ†’ TangentSpace I x} :
      @[simp]
      theorem VectorField.mlieBracket_self {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {V : (x : M) โ†’ TangentSpace I x} :
      mlieBracket I V V = 0
      theorem VectorField.mlieBracketWithin_congr_set' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (y : M) (h : s =แถ [nhdsWithin x {y}แถœ] t) :

      Variant of mlieBracketWithin_congr_set where one requires the sets to coincide only in the complement of a point.

      theorem VectorField.mlieBracketWithin_congr_set {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (h : s =แถ [nhds x] t) :
      theorem VectorField.mlieBracketWithin_inter {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (ht : t โˆˆ nhds x) :
      theorem VectorField.mlieBracketWithin_of_mem_nhds {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (h : s โˆˆ nhds x) :
      mlieBracketWithin I V W s x = mlieBracket I V W x
      theorem VectorField.mlieBracketWithin_of_isOpen {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (hs : IsOpen s) (hx : x โˆˆ s) :
      mlieBracketWithin I V W s x = mlieBracket I V W x
      theorem VectorField.mlieBracketWithin_eventually_congr_set' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (y : M) (h : s =แถ [nhdsWithin x {y}แถœ] t) :

      Variant of mlieBracketWithin_eventually_congr_set where one requires the sets to coincide only in the complement of a point.

      theorem VectorField.mlieBracketWithin_eventually_congr_set {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} (h : s =แถ [nhds x] t) :
      theorem Filter.EventuallyEq.mlieBracketWithin_vectorField_eq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhdsWithin x s] V) (hxV : Vโ‚ x = V x) (hW : Wโ‚ =แถ [nhdsWithin x s] W) (hxW : Wโ‚ x = W x) :
      theorem Filter.EventuallyEq.mlieBracketWithin_vectorField_eq_of_mem {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhdsWithin x s] V) (hW : Wโ‚ =แถ [nhdsWithin x s] W) (hx : x โˆˆ s) :
      theorem Filter.EventuallyEq.mlieBracketWithin_vectorField' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhdsWithin x s] V) (hW : Wโ‚ =แถ [nhdsWithin x s] W) (ht : t โŠ† s) :

      If vector fields coincide on a neighborhood of a point within a set, then the Lie brackets also coincide on a neighborhood of this point within this set. Version where one considers the Lie bracket within a subset.

      theorem Filter.EventuallyEq.mlieBracketWithin_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhdsWithin x s] V) (hW : Wโ‚ =แถ [nhdsWithin x s] W) :
      theorem Filter.EventuallyEq.mlieBracketWithin_vectorField_of_insert {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhdsWithin x (insert x s)] V) (hW : Wโ‚ =แถ [nhdsWithin x (insert x s)] W) :
      theorem Filter.EventuallyEq.mlieBracketWithin_vectorField_eq_nhds {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhds x] V) (hW : Wโ‚ =แถ [nhds x] W) :
      theorem VectorField.mlieBracketWithin_congr {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Set.EqOn Vโ‚ V s) (hVx : Vโ‚ x = V x) (hW : Set.EqOn Wโ‚ W s) (hWx : Wโ‚ x = W x) :
      mlieBracketWithin I Vโ‚ Wโ‚ s x = mlieBracketWithin I V W s x
      theorem VectorField.mlieBracketWithin_congr' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Set.EqOn Vโ‚ V s) (hW : Set.EqOn Wโ‚ W s) (hx : x โˆˆ s) :
      mlieBracketWithin I Vโ‚ Wโ‚ s x = mlieBracketWithin I V W s x

      Version of mlieBracketWithin_congr in which one assumes that the point belongs to the given set.

      theorem Filter.EventuallyEq.mlieBracket_vectorField_eq {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhds x] V) (hW : Wโ‚ =แถ [nhds x] W) :
      VectorField.mlieBracket I Vโ‚ Wโ‚ x = VectorField.mlieBracket I V W x
      theorem Filter.EventuallyEq.mlieBracket_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} (hV : Vโ‚ =แถ [nhds x] V) (hW : Wโ‚ =แถ [nhds x] W) :
      theorem MDifferentiableWithinAt.differentiableWithinAt_mpullbackWithin_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hV : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) s x) :
      DifferentiableWithinAt ๐•œ (VectorField.mpullbackWithin (modelWithCornersSelf ๐•œ E) I (โ†‘(extChartAt I x).symm) V (Set.range โ†‘I)) (โ†‘(extChartAt I x).symm โปยน' s โˆฉ Set.range โ†‘I) (โ†‘(extChartAt I x) x)
      theorem VectorField.mlieBracketWithin_smul_left {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} {c : ๐•œ} [IsManifold I 2 M] [CompleteSpace E] (hV : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) s x) (hs : UniqueMDiffWithinAt I s x) :
      theorem VectorField.mlieBracket_smul_left {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W : (x : M) โ†’ TangentSpace I x} {c : ๐•œ} [IsManifold I 2 M] [CompleteSpace E] (hV : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) x) :
      mlieBracket I (c โ€ข V) W x = c โ€ข mlieBracket I V W x
      theorem VectorField.mlieBracketWithin_smul_right {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} {c : ๐•œ} [IsManifold I 2 M] [CompleteSpace E] (hW : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) s x) (hs : UniqueMDiffWithinAt I s x) :
      theorem VectorField.mlieBracket_smul_right {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W : (x : M) โ†’ TangentSpace I x} {c : ๐•œ} [IsManifold I 2 M] [CompleteSpace E] (hW : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) x) :
      mlieBracket I V (c โ€ข W) x = c โ€ข mlieBracket I V W x
      theorem VectorField.mlieBracketWithin_add_left {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Vโ‚ : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hV : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) s x) (hVโ‚ : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := Vโ‚ x }) s x) (hs : UniqueMDiffWithinAt I s x) :
      mlieBracketWithin I (V + Vโ‚) W s x = mlieBracketWithin I V W s x + mlieBracketWithin I Vโ‚ W s x
      theorem VectorField.mlieBracket_add_left {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W Vโ‚ : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hV : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) x) (hVโ‚ : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := Vโ‚ x }) x) :
      mlieBracket I (V + Vโ‚) W x = mlieBracket I V W x + mlieBracket I Vโ‚ W x
      theorem VectorField.mlieBracketWithin_add_right {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W Wโ‚ : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hW : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) s x) (hWโ‚ : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := Wโ‚ x }) s x) (hs : UniqueMDiffWithinAt I s x) :
      mlieBracketWithin I V (W + Wโ‚) s x = mlieBracketWithin I V W s x + mlieBracketWithin I V Wโ‚ s x
      theorem VectorField.mlieBracket_add_right {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} {V W Wโ‚ : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hW : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) x) (hWโ‚ : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := Wโ‚ x }) x) :
      mlieBracket I V (W + Wโ‚) x = mlieBracket I V W x + mlieBracket I V Wโ‚ x
      theorem VectorField.mlieBracketWithin_of_mem_nhdsWithin {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (st : t โˆˆ nhdsWithin x s) (hs : UniqueMDiffWithinAt I s x) (hV : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) t x) (hW : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) t x) :
      theorem VectorField.mlieBracketWithin_subset {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (st : s โŠ† t) (ht : UniqueMDiffWithinAt I s x) (hV : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) t x) (hW : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) t x) :
      theorem VectorField.mlieBracketWithin_eq_mlieBracket {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} {x : M} {V W : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hs : UniqueMDiffWithinAt I s x) (hV : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) x) (hW : MDifferentiableAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) x) :
      mlieBracketWithin I V W s x = mlieBracket I V W x
      theorem DifferentiableWithinAt.mlieBracketWithin_congr_mono {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s t : Set M} {x : M} {V W Vโ‚ Wโ‚ : (x : M) โ†’ TangentSpace I x} [IsManifold I 2 M] [CompleteSpace E] (hV : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := V x }) s x) (hVs : Set.EqOn Vโ‚ V t) (hVx : Vโ‚ x = V x) (hW : MDifferentiableWithinAt I I.tangent (fun (x : M) => { proj := x, snd := W x }) s x) (hWs : Set.EqOn Wโ‚ W t) (hWx : Wโ‚ x = W x) (hxt : UniqueMDiffWithinAt I t x) (hโ‚ : t โŠ† s) :
      theorem VectorField.mpullbackWithin_mlieBracketWithin_of_isSymmSndFDerivWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace ๐•œ E'] {I' : ModelWithCorners ๐•œ E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I 2 M] [IsManifold I' 2 M'] [CompleteSpace E] {f : M โ†’ M'} {V W : (x : M') โ†’ TangentSpace I' x} {xโ‚€ : M} {s : Set M} {t : Set M'} (hV : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := V x }) t (f xโ‚€)) (hW : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := W x }) t (f xโ‚€)) (hu : UniqueMDiffOn I s) (hf : ContMDiffWithinAt I I' 2 f s xโ‚€) (hxโ‚€ : xโ‚€ โˆˆ s) (hst : f โปยน' t โˆˆ nhdsWithin xโ‚€ s) (hsymm : IsSymmSndFDerivWithinAt ๐•œ (โ†‘(extChartAt I' (f xโ‚€)) โˆ˜ f โˆ˜ โ†‘(extChartAt I xโ‚€).symm) (โ†‘(extChartAt I xโ‚€).symm โปยน' s โˆฉ Set.range โ†‘I) (โ†‘(extChartAt I xโ‚€) xโ‚€)) :
      mpullbackWithin I I' f (mlieBracketWithin I' V W t) s xโ‚€ = mlieBracketWithin I (mpullbackWithin I I' f V s) (mpullbackWithin I I' f W s) s xโ‚€
      theorem VectorField.mpullbackWithin_mlieBracketWithin' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace ๐•œ E'] {I' : ModelWithCorners ๐•œ E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I (minSmoothness ๐•œ 2) M] [IsManifold I' (minSmoothness ๐•œ 2) M'] [CompleteSpace E] {n : WithTop โ„•โˆž} {f : M โ†’ M'} {V W : (x : M') โ†’ TangentSpace I' x} {xโ‚€ : M} {s u : Set M} {t : Set M'} (hV : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := V x }) t (f xโ‚€)) (hW : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := W x }) t (f xโ‚€)) (hs : UniqueMDiffOn I s) (hu : UniqueMDiffOn I u) (hf : ContMDiffWithinAt I I' n f u xโ‚€) (hxโ‚€ : xโ‚€ โˆˆ s) (hn : minSmoothness ๐•œ 2 โ‰ค n) (hst : f โปยน' t โˆˆ nhdsWithin xโ‚€ s) (h'xโ‚€ : xโ‚€ โˆˆ closure (interior u)) (hsu : s โŠ† u) :
      mpullbackWithin I I' f (mlieBracketWithin I' V W t) s xโ‚€ = mlieBracketWithin I (mpullbackWithin I I' f V s) (mpullbackWithin I I' f W s) s xโ‚€

      The pullback commutes with the Lie bracket of vector fields on manifolds. Version where one assumes that the map is smooth on a larget set u (so that the condition xโ‚€ โˆˆ closure (interior u), needed to guarantee the symmetry of the second derivative, becomes easier to check.)

      theorem VectorField.mpullbackWithin_mlieBracketWithin {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace ๐•œ E'] {I' : ModelWithCorners ๐•œ E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I (minSmoothness ๐•œ 2) M] [IsManifold I' (minSmoothness ๐•œ 2) M'] [CompleteSpace E] {n : WithTop โ„•โˆž} {f : M โ†’ M'} {V W : (x : M') โ†’ TangentSpace I' x} {xโ‚€ : M} {s : Set M} {t : Set M'} (hV : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := V x }) t (f xโ‚€)) (hW : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := W x }) t (f xโ‚€)) (hu : UniqueMDiffOn I s) (hf : ContMDiffWithinAt I I' n f s xโ‚€) (hxโ‚€ : xโ‚€ โˆˆ s) (hn : minSmoothness ๐•œ 2 โ‰ค n) (hst : f โปยน' t โˆˆ nhdsWithin xโ‚€ s) (h'xโ‚€ : xโ‚€ โˆˆ closure (interior s)) :
      mpullbackWithin I I' f (mlieBracketWithin I' V W t) s xโ‚€ = mlieBracketWithin I (mpullbackWithin I I' f V s) (mpullbackWithin I I' f W s) s xโ‚€

      The pullback commutes with the Lie bracket of vector fields on manifolds.

      theorem VectorField.mpullback_mlieBracketWithin {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace ๐•œ E'] {I' : ModelWithCorners ๐•œ E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I (minSmoothness ๐•œ 2) M] [IsManifold I' (minSmoothness ๐•œ 2) M'] [CompleteSpace E] {n : WithTop โ„•โˆž} {f : M โ†’ M'} {V W : (x : M') โ†’ TangentSpace I' x} {xโ‚€ : M} {s : Set M} {t : Set M'} (hV : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := V x }) t (f xโ‚€)) (hW : MDifferentiableWithinAt I' I'.tangent (fun (x : M') => { proj := x, snd := W x }) t (f xโ‚€)) (hu : UniqueMDiffOn I s) (hf : ContMDiffAt I I' n f xโ‚€) (hxโ‚€ : xโ‚€ โˆˆ s) (hn : minSmoothness ๐•œ 2 โ‰ค n) (hst : f โปยน' t โˆˆ nhdsWithin xโ‚€ s) :
      mpullback I I' f (mlieBracketWithin I' V W t) xโ‚€ = mlieBracketWithin I (mpullback I I' f V) (mpullback I I' f W) s xโ‚€

      The pullback commutes with the Lie bracket of vector fields on manifolds.

      theorem VectorField.mpullback_mlieBracket {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {H' : Type u_5} [TopologicalSpace H'] {E' : Type u_6} [NormedAddCommGroup E'] [NormedSpace ๐•œ E'] {I' : ModelWithCorners ๐•œ E' H'} {M' : Type u_7} [TopologicalSpace M'] [ChartedSpace H' M'] [IsManifold I (minSmoothness ๐•œ 2) M] [IsManifold I' (minSmoothness ๐•œ 2) M'] [CompleteSpace E] {n : WithTop โ„•โˆž} {f : M โ†’ M'} {V W : (x : M') โ†’ TangentSpace I' x} {xโ‚€ : M} (hV : MDifferentiableAt I' I'.tangent (fun (x : M') => { proj := x, snd := V x }) (f xโ‚€)) (hW : MDifferentiableAt I' I'.tangent (fun (x : M') => { proj := x, snd := W x }) (f xโ‚€)) (hf : ContMDiffAt I I' n f xโ‚€) (hn : minSmoothness ๐•œ 2 โ‰ค n) :
      mpullback I I' f (mlieBracket I' V W) xโ‚€ = mlieBracket I (mpullback I I' f V) (mpullback I I' f W) xโ‚€
      theorem ContMDiffWithinAt.mlieBracketWithin_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (minSmoothness ๐•œ 2) M] [CompleteSpace E] {n : WithTop โ„•โˆž} [IsManifold I (n + 1) M] {m : WithTop โ„•โˆž} {U V : (x : M) โ†’ TangentSpace I x} {s : Set M} {x : M} (hU : ContMDiffWithinAt I I.tangent n (fun (x : M) => { proj := x, snd := U x }) s x) (hV : ContMDiffWithinAt I I.tangent n (fun (x : M) => { proj := x, snd := V x }) s x) (hs : UniqueMDiffOn I s) (hx : x โˆˆ s) (hmn : minSmoothness ๐•œ (m + 1) โ‰ค n) :
      ContMDiffWithinAt I I.tangent m (fun (x : M) => { proj := x, snd := VectorField.mlieBracketWithin I U V s x }) s x

      If two vector fields are C^n with n โ‰ฅ m + 1, then their Lie bracket is C^m.

      theorem ContMDiffAt.mlieBracket_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (minSmoothness ๐•œ 2) M] [CompleteSpace E] {m n : โ„•โˆž} [IsManifold I (โ†‘n + 1) M] {U V : (x : M) โ†’ TangentSpace I x} {x : M} (hU : ContMDiffAt I I.tangent (โ†‘n) (fun (x : M) => { proj := x, snd := U x }) x) (hV : ContMDiffAt I I.tangent (โ†‘n) (fun (x : M) => { proj := x, snd := V x }) x) (hmn : minSmoothness ๐•œ (โ†‘m + 1) โ‰ค โ†‘n) :
      ContMDiffAt I I.tangent (โ†‘m) (fun (x : M) => { proj := x, snd := VectorField.mlieBracket I U V x }) x

      If two vector fields are C^n with n โ‰ฅ m + 1, then their Lie bracket is C^m.

      theorem ContMDiffOn.mlieBracketWithin_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {s : Set M} [IsManifold I (minSmoothness ๐•œ 2) M] [CompleteSpace E] {m n : โ„•โˆž} [IsManifold I (โ†‘n + 1) M] {U V : (x : M) โ†’ TangentSpace I x} (hU : ContMDiffOn I I.tangent (โ†‘n) (fun (x : M) => { proj := x, snd := U x }) s) (hV : ContMDiffOn I I.tangent (โ†‘n) (fun (x : M) => { proj := x, snd := V x }) s) (hs : UniqueMDiffOn I s) (hmn : minSmoothness ๐•œ (โ†‘m + 1) โ‰ค โ†‘n) :
      ContMDiffOn I I.tangent (โ†‘m) (fun (x : M) => { proj := x, snd := VectorField.mlieBracketWithin I U V s x }) s

      If two vector fields are C^n with n โ‰ฅ m + 1, then their Lie bracket is C^m.

      theorem ContDiff.mlieBracket_vectorField {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (minSmoothness ๐•œ 2) M] [CompleteSpace E] {m n : โ„•โˆž} [IsManifold I (โ†‘n + 1) M] {U V : (x : M) โ†’ TangentSpace I x} (hU : ContMDiff I I.tangent โ†‘n fun (x : M) => { proj := x, snd := U x }) (hV : ContMDiff I I.tangent โ†‘n fun (x : M) => { proj := x, snd := V x }) (hmn : minSmoothness ๐•œ (โ†‘m + 1) โ‰ค โ†‘n) :
      ContMDiff I I.tangent โ†‘m fun (x : M) => { proj := x, snd := VectorField.mlieBracket I U V x }

      If two vector fields are C^n with n โ‰ฅ m + 1, then their Lie bracket is C^m.

      theorem VectorField.leibniz_identity_mlieBracketWithin_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (minSmoothness ๐•œ 3) M] [CompleteSpace E] {U V W : (x : M) โ†’ TangentSpace I x} {s : Set M} {x : M} (hs : UniqueMDiffOn I s) (h's : x โˆˆ closure (interior s)) (hx : x โˆˆ s) (hU : ContMDiffWithinAt I I.tangent (minSmoothness ๐•œ 2) (fun (x : M) => { proj := x, snd := U x }) s x) (hV : ContMDiffWithinAt I I.tangent (minSmoothness ๐•œ 2) (fun (x : M) => { proj := x, snd := V x }) s x) (hW : ContMDiffWithinAt I I.tangent (minSmoothness ๐•œ 2) (fun (x : M) => { proj := x, snd := W x }) s x) :

      The Lie bracket of vector fields in manifolds satisfies the Leibniz identity [U, [V, W]] = [[U, V], W] + [V, [U, W]] (also called Jacobi identity).

      theorem VectorField.leibniz_identity_mlieBracket_apply {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (minSmoothness ๐•œ 3) M] [CompleteSpace E] {U V W : (x : M) โ†’ TangentSpace I x} {x : M} (hU : ContMDiffAt I I.tangent (minSmoothness ๐•œ 2) (fun (x : M) => { proj := x, snd := U x }) x) (hV : ContMDiffAt I I.tangent (minSmoothness ๐•œ 2) (fun (x : M) => { proj := x, snd := V x }) x) (hW : ContMDiffAt I I.tangent (minSmoothness ๐•œ 2) (fun (x : M) => { proj := x, snd := W x }) x) :
      mlieBracket I U (mlieBracket I V W) x = mlieBracket I (mlieBracket I U V) W x + mlieBracket I V (mlieBracket I U W) x

      The Lie bracket of vector fields in manifolds satisfies the Leibniz identity [U, [V, W]] = [[U, V], W] + [V, [U, W]] (also called Jacobi identity).

      theorem VectorField.leibniz_identity_mlieBracket {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {H : Type u_2} [TopologicalSpace H] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {I : ModelWithCorners ๐•œ E H} {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] [IsManifold I (minSmoothness ๐•œ 3) M] [CompleteSpace E] {U V W : (x : M) โ†’ TangentSpace I x} (hU : ContMDiff I I.tangent (minSmoothness ๐•œ 2) fun (x : M) => { proj := x, snd := U x }) (hV : ContMDiff I I.tangent (minSmoothness ๐•œ 2) fun (x : M) => { proj := x, snd := V x }) (hW : ContMDiff I I.tangent (minSmoothness ๐•œ 2) fun (x : M) => { proj := x, snd := W x }) :

      The Lie bracket of vector fields in manifolds satisfies the Leibniz identity [U, [V, W]] = [[U, V], W] + [V, [U, W]] (also called Jacobi identity).