Documentation

Mathlib.Geometry.RingedSpace.LocallyRingedSpace.ResidueField

Residue fields of points #

Any point x of a locally ringed space X comes with a natural residue field, namely the residue field of the stalk at x. Moreover, for every open subset of X containing x, we have a canonical evaluation map from Γ(X, U) to the residue field of X at x.

Main definitions #

The following are in the AlgebraicGeometry.LocallyRingedSpace namespace:

The residue field of X at a point x is the residue field of the stalk of X at x.

Equations
Instances For

    If U is an open of X containing x, we have a canonical ring map from the sections over U to the residue field of x.

    If we interpret sections over U as functions of X defined on U, then this ring map corresponds to evaluation at x.

    Equations
    Instances For

      The global evaluation map from Γ(X, ⊤) to the residue field at x.

      Equations
      Instances For

        If X ⟶ Y is a morphism of locally ringed spaces and x a point of X, we obtain a morphism of residue fields in the other direction.

        Equations
        Instances For