Documentation

Mathlib.GroupTheory.Complement

Complements #

In this file we define the complement of a subgroup.

Main definitions #

Main results #

def Subgroup.IsComplement {G : Type u_1} [Group G] (S T : Set G) :

S and T are complements if (*) : S × T → G is a bijection. This notion generalizes left transversals, right transversals, and complementary subgroups.

Equations
Instances For
    def AddSubgroup.IsComplement {G : Type u_1} [AddGroup G] (S T : Set G) :

    S and T are complements if (+) : S × T → G is a bijection

    Equations
    Instances For
      @[reducible, inline]
      abbrev Subgroup.IsComplement' {G : Type u_1} [Group G] (H K : Subgroup G) :

      H and K are complements if (*) : H × K → G is a bijection

      Equations
      Instances For
        @[reducible, inline]
        abbrev AddSubgroup.IsComplement' {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :

        H and K are complements if (+) : H × K → G is a bijection

        Equations
        Instances For
          theorem Subgroup.isComplement'_def {G : Type u_1} [Group G] {H K : Subgroup G} :
          theorem Subgroup.isComplement_iff_existsUnique {G : Type u_1} [Group G] {S T : Set G} :
          IsComplement S T ∀ (g : G), ∃! x : S × T, x.1 * x.2 = g
          theorem AddSubgroup.isComplement_iff_existsUnique {G : Type u_1} [AddGroup G] {S T : Set G} :
          IsComplement S T ∀ (g : G), ∃! x : S × T, x.1 + x.2 = g
          theorem Subgroup.IsComplement.existsUnique {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) (g : G) :
          ∃! x : S × T, x.1 * x.2 = g
          theorem AddSubgroup.IsComplement.existsUnique {G : Type u_1} [AddGroup G] {S T : Set G} (h : IsComplement S T) (g : G) :
          ∃! x : S × T, x.1 + x.2 = g
          theorem Subgroup.IsComplement'.symm {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
          theorem Subgroup.isComplement_univ_left {G : Type u_1} [Group G] {S : Set G} :
          IsComplement Set.univ S ∃ (g : G), S = {g}
          theorem AddSubgroup.isComplement_univ_left {G : Type u_1} [AddGroup G] {S : Set G} :
          IsComplement Set.univ S ∃ (g : G), S = {g}
          theorem Subgroup.isComplement_univ_right {G : Type u_1} [Group G] {S : Set G} :
          IsComplement S Set.univ ∃ (g : G), S = {g}
          theorem AddSubgroup.isComplement_univ_right {G : Type u_1} [AddGroup G] {S : Set G} :
          IsComplement S Set.univ ∃ (g : G), S = {g}
          theorem Subgroup.IsComplement.mul_eq {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) :
          theorem AddSubgroup.IsComplement.add_eq {G : Type u_1} [AddGroup G] {S T : Set G} (h : IsComplement S T) :
          theorem Subgroup.IsComplement.nonempty_left {G : Type u_1} [Group G] {S T : Set G} (hst : IsComplement S T) :
          theorem Subgroup.IsComplement.nonempty_right {G : Type u_1} [Group G] {S T : Set G} (hst : IsComplement S T) :
          theorem Subgroup.IsComplement.pairwiseDisjoint_smul {G : Type u_1} [Group G] {S T : Set G} (hst : IsComplement S T) :
          S.PairwiseDisjoint fun (x : G) => x T
          theorem AddSubgroup.IsComplement.pairwiseDisjoint_vadd {G : Type u_1} [AddGroup G] {S T : Set G} (hst : IsComplement S T) :
          S.PairwiseDisjoint fun (x : G) => x +ᵥ T
          theorem Subgroup.IsComplement.card_mul_card {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) :
          theorem Subgroup.isComplement_iff_existsUnique_inv_mul_mem {G : Type u_1} [Group G] {S T : Set G} :
          IsComplement S T ∀ (g : G), ∃! s : S, (↑s)⁻¹ * g T
          theorem AddSubgroup.isComplement_iff_existsUnique_neg_add_mem {G : Type u_1} [AddGroup G] {S T : Set G} :
          IsComplement S T ∀ (g : G), ∃! s : S, -s + g T
          theorem Subgroup.isComplement_iff_existsUnique_mul_inv_mem {G : Type u_1} [Group G] {S T : Set G} :
          IsComplement S T ∀ (g : G), ∃! t : T, g * (↑t)⁻¹ S
          theorem AddSubgroup.isComplement_iff_existsUnique_add_neg_mem {G : Type u_1} [AddGroup G] {S T : Set G} :
          IsComplement S T ∀ (g : G), ∃! t : T, g + -t S
          theorem Subgroup.isComplement_subgroup_right_iff_existsUnique_quotientGroupMk {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} :
          IsComplement S H ∀ (q : G H), ∃! s : S, s = q
          theorem Subgroup.IsComplement.card_left {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : IsComplement S H) :
          theorem AddSubgroup.IsComplement.card_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : IsComplement S H) :
          theorem Subgroup.IsComplement.ncard_left {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : IsComplement S H) :
          theorem AddSubgroup.IsComplement.ncard_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : IsComplement S H) :
          theorem Subgroup.IsComplement.card_right {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (h : IsComplement (↑H) T) :
          theorem AddSubgroup.IsComplement.card_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (h : IsComplement (↑H) T) :
          theorem Subgroup.IsComplement.ncard_right {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (h : IsComplement (↑H) T) :
          theorem AddSubgroup.IsComplement.ncard_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (h : IsComplement (↑H) T) :
          theorem Subgroup.isComplement_range_left {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
          theorem AddSubgroup.isComplement_range_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
          theorem Subgroup.exists_isComplement_left {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
          ∃ (S : Set G), IsComplement S H g S
          theorem AddSubgroup.exists_isComplement_left {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
          ∃ (S : Set G), IsComplement S H g S
          theorem Subgroup.exists_isComplement_right {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
          ∃ (T : Set G), IsComplement (↑H) T g T
          theorem AddSubgroup.exists_isComplement_right {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
          ∃ (T : Set G), IsComplement (↑H) T g T
          theorem Subgroup.exists_left_transversal_of_le {G : Type u_1} [Group G] {H' H : Subgroup G} (h : H' H) :
          ∃ (S : Set G), S * H' = H Nat.card S * Nat.card H' = Nat.card H

          Given two subgroups H' ⊆ H, there exists a left transversal to H' inside H.

          theorem AddSubgroup.exists_left_transversal_of_le {G : Type u_1} [AddGroup G] {H' H : AddSubgroup G} (h : H' H) :
          ∃ (S : Set G), S + H' = H Nat.card S * Nat.card H' = Nat.card H

          Given two subgroups H' ⊆ H, there exists a transversal to H' inside H

          theorem Subgroup.exists_right_transversal_of_le {G : Type u_1} [Group G] {H' H : Subgroup G} (h : H' H) :
          ∃ (S : Set G), H' * S = H Nat.card H' * Nat.card S = Nat.card H

          Given two subgroups H' ⊆ H, there exists a right transversal to H' inside H.

          theorem AddSubgroup.exists_right_transversal_of_le {G : Type u_1} [AddGroup G] {H' H : AddSubgroup G} (h : H' H) :
          ∃ (S : Set G), H' + S = H Nat.card H' * Nat.card S = Nat.card H

          Given two subgroups H' ⊆ H, there exists a transversal to H' inside H

          noncomputable def Subgroup.IsComplement.equiv {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) :
          G S × T

          The equivalence G ≃ S × T, such that the inverse is (*) : S × T → G

          Equations
          Instances For
            @[simp]
            theorem Subgroup.IsComplement.equiv_symm_apply {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (x : S × T) :
            hST.equiv.symm x = x.1 * x.2
            @[simp]
            theorem Subgroup.IsComplement.equiv_fst_mul_equiv_snd {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (g : G) :
            (hST.equiv g).1 * (hST.equiv g).2 = g
            theorem Subgroup.IsComplement.equiv_fst_eq_mul_inv {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (g : G) :
            (hST.equiv g).1 = g * (↑(hST.equiv g).2)⁻¹
            theorem Subgroup.IsComplement.equiv_snd_eq_inv_mul {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (g : G) :
            (hST.equiv g).2 = (↑(hST.equiv g).1)⁻¹ * g
            theorem Subgroup.IsComplement.equiv_fst_eq_iff_leftCosetEquivalence {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) {g₁ g₂ : G} :
            (hSK.equiv g₁).1 = (hSK.equiv g₂).1 LeftCosetEquivalence (↑K) g₁ g₂
            theorem Subgroup.IsComplement.equiv_snd_eq_iff_rightCosetEquivalence {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) {g₁ g₂ : G} :
            (hHT.equiv g₁).2 = (hHT.equiv g₂).2 RightCosetEquivalence (↑H) g₁ g₂
            theorem Subgroup.IsComplement.leftCosetEquivalence_equiv_fst {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) (g : G) :
            LeftCosetEquivalence (↑K) g (hSK.equiv g).1
            theorem Subgroup.IsComplement.rightCosetEquivalence_equiv_snd {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) (g : G) :
            RightCosetEquivalence (↑H) g (hHT.equiv g).2
            theorem Subgroup.IsComplement.equiv_fst_eq_self_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) (hg : g S) :
            (hST.equiv g).1 = g, hg
            theorem Subgroup.IsComplement.equiv_snd_eq_self_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) (hg : g T) :
            (hST.equiv g).2 = g, hg
            theorem Subgroup.IsComplement.equiv_snd_eq_one_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) (hg : g S) :
            (hST.equiv g).2 = 1, h1
            theorem Subgroup.IsComplement.equiv_fst_eq_one_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) (hg : g T) :
            (hST.equiv g).1 = 1, h1
            theorem Subgroup.IsComplement.equiv_mul_right {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) (g : G) (k : K) :
            hSK.equiv (g * k) = ((hSK.equiv g).1, (hSK.equiv g).2 * k)
            theorem Subgroup.IsComplement.equiv_mul_right_of_mem {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) {g k : G} (h : k K) :
            hSK.equiv (g * k) = ((hSK.equiv g).1, (hSK.equiv g).2 * k, h)
            theorem Subgroup.IsComplement.equiv_mul_left {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) (h : H) (g : G) :
            hHT.equiv (h * g) = (h * (hHT.equiv g).1, (hHT.equiv g).2)
            theorem Subgroup.IsComplement.equiv_mul_left_of_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) {h g : G} (hh : h H) :
            hHT.equiv (h * g) = (h, hh * (hHT.equiv g).1, (hHT.equiv g).2)
            theorem Subgroup.IsComplement.equiv_one {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (hs1 : 1 S) (ht1 : 1 T) :
            hST.equiv 1 = (1, hs1, 1, ht1)
            theorem Subgroup.IsComplement.equiv_fst_eq_self_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) :
            (hST.equiv g).1 = g g S
            theorem Subgroup.IsComplement.equiv_snd_eq_self_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) :
            (hST.equiv g).2 = g g T
            theorem Subgroup.IsComplement.coe_equiv_fst_eq_one_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) :
            (hST.equiv g).1 = 1 g T
            theorem Subgroup.IsComplement.coe_equiv_snd_eq_one_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) :
            (hST.equiv g).2 = 1 g S
            noncomputable def Subgroup.IsComplement.leftQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) :
            G H S

            A left transversal is in bijection with left cosets.

            Equations
            Instances For
              noncomputable def AddSubgroup.IsComplement.leftQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) :
              G H S

              A left transversal is in bijection with left cosets.

              Equations
              Instances For
                theorem Subgroup.IsComplement.finite_left_iff {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : IsComplement S H) :

                A left transversal is finite iff the subgroup has finite index.

                theorem AddSubgroup.IsComplement.finite_left_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : IsComplement S H) :

                A left transversal is finite iff the subgroup has finite index.

                theorem Subgroup.IsComplement.finite_left {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} [H.FiniteIndex] (hS : IsComplement S H) :
                theorem AddSubgroup.IsComplement.finite_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} [H.FiniteIndex] (hS : IsComplement S H) :
                theorem Subgroup.IsComplement.leftQuotientEquiv_apply {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                (.leftQuotientEquiv q) = f q
                theorem AddSubgroup.IsComplement.leftQuotientEquiv_apply {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                (.leftQuotientEquiv q) = f q
                noncomputable def Subgroup.IsComplement.toLeftFun {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) :
                GS

                A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                Equations
                Instances For
                  noncomputable def AddSubgroup.IsComplement.toLeftFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) :
                  GS

                  A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                  Equations
                  Instances For
                    theorem Subgroup.IsComplement.inv_toLeftFun_mul_mem {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                    (↑(hS.toLeftFun g))⁻¹ * g H
                    theorem AddSubgroup.IsComplement.neg_toLeftFun_add_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                    -(hS.toLeftFun g) + g H
                    theorem Subgroup.IsComplement.inv_mul_toLeftFun_mem {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                    g⁻¹ * (hS.toLeftFun g) H
                    theorem AddSubgroup.IsComplement.neg_add_toLeftFun_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                    -g + (hS.toLeftFun g) H
                    noncomputable def Subgroup.IsComplement.rightQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) :

                    A right transversal is in bijection with right cosets.

                    Equations
                    Instances For
                      noncomputable def AddSubgroup.IsComplement.rightQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) :

                      A right transversal is in bijection with right cosets.

                      Equations
                      Instances For
                        theorem Subgroup.IsComplement.finite_right_iff {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (h : IsComplement (↑H) T) :

                        A right transversal is finite iff the subgroup has finite index.

                        theorem AddSubgroup.IsComplement.finite_right_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (h : IsComplement (↑H) T) :

                        A right transversal is finite iff the subgroup has finite index.

                        theorem Subgroup.IsComplement.finite_right {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} [H.FiniteIndex] (hT : IsComplement (↑H) T) :
                        theorem AddSubgroup.IsComplement.finite_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} [H.FiniteIndex] (hT : IsComplement (↑H) T) :
                        noncomputable def Subgroup.IsComplement.toRightFun {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) :
                        GT

                        A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                        Equations
                        Instances For
                          noncomputable def AddSubgroup.IsComplement.toRightFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) :
                          GT

                          A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                          Equations
                          Instances For
                            theorem Subgroup.IsComplement.mul_inv_toRightFun_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                            g * (↑(hT.toRightFun g))⁻¹ H
                            theorem AddSubgroup.IsComplement.add_neg_toRightFun_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                            g + -(hT.toRightFun g) H
                            theorem Subgroup.IsComplement.toRightFun_mul_inv_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                            (hT.toRightFun g) * g⁻¹ H
                            theorem AddSubgroup.IsComplement.toRightFun_add_neg_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                            (hT.toRightFun g) + -g H
                            theorem Subgroup.IsComplement.encard_left {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} [H.FiniteIndex] (h : IsComplement S H) :
                            S.encard = H.index
                            theorem AddSubgroup.IsComplement.encard_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} [H.FiniteIndex] (h : IsComplement S H) :
                            S.encard = H.index
                            theorem Subgroup.IsComplement.encard_right {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} [H.FiniteIndex] (h : IsComplement (↑H) T) :
                            T.encard = H.index
                            theorem AddSubgroup.IsComplement.encard_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} [H.FiniteIndex] (h : IsComplement (↑H) T) :
                            T.encard = H.index
                            @[reducible, inline]
                            abbrev Subgroup.LeftTransversal {G : Type u_1} [Group G] (H : Subgroup G) :
                            Type u_1

                            The collection of left transversals of a subgroup

                            Equations
                            Instances For
                              @[reducible, inline]
                              abbrev AddSubgroup.LeftTransversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                              Type u_1

                              The collection of left transversals of a subgroup.

                              Equations
                              Instances For
                                @[reducible, inline]
                                abbrev Subgroup.RightTransversal {G : Type u_1} [Group G] (H : Subgroup G) :
                                Type u_1

                                The collection of right transversals of a subgroup

                                Equations
                                Instances For
                                  @[reducible, inline]
                                  abbrev AddSubgroup.RightTransversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                  Type u_1

                                  The collection of right transversals of a subgroup.

                                  Equations
                                  Instances For
                                    noncomputable instance Subgroup.instMulActionLeftTransversal {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] :
                                    Equations
                                    Equations
                                    theorem Subgroup.smul_toLeftFun {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (g : G) :
                                    f (.toLeftFun g) = (.toLeftFun (f g))
                                    theorem AddSubgroup.vadd_toLeftFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (g : G) :
                                    f +ᵥ (.toLeftFun g) = (.toLeftFun (f +ᵥ g))
                                    theorem Subgroup.smul_leftQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                    f (.leftQuotientEquiv q) = (.leftQuotientEquiv (f q))
                                    theorem AddSubgroup.vadd_leftQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                    f +ᵥ (.leftQuotientEquiv q) = (.leftQuotientEquiv (f +ᵥ q))
                                    theorem Subgroup.smul_apply_eq_smul_apply_inv_smul {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                    (.leftQuotientEquiv q) = f (.leftQuotientEquiv (f⁻¹ q))
                                    theorem AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                    (.leftQuotientEquiv q) = f +ᵥ (.leftQuotientEquiv (-f +ᵥ q))
                                    theorem Subgroup.IsComplement'.isCompl {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                    theorem Subgroup.IsComplement'.sup_eq_top {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                    HK =
                                    theorem Subgroup.IsComplement'.disjoint {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                    noncomputable def Subgroup.IsComplement'.QuotientMulEquiv {G : Type u_1} [Group G] {H K : Subgroup G} [K.Normal] (h : H.IsComplement' K) :
                                    G K ≃* H

                                    If H and K are complementary with K normal, then G ⧸ K is isomorphic to H.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem Subgroup.IsComplement.card_mul {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) :
                                      theorem Subgroup.IsComplement'.card_mul {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                      theorem Subgroup.isComplement'_of_disjoint_and_mul_eq_univ {G : Type u_1} [Group G] {H K : Subgroup G} (h1 : Disjoint H K) (h2 : H * K = Set.univ) :
                                      theorem Subgroup.isComplement'_of_card_mul_and_disjoint {G : Type u_1} [Group G] {H K : Subgroup G} [Finite G] (h1 : Nat.card H * Nat.card K = Nat.card G) (h2 : Disjoint H K) :
                                      theorem Subgroup.isComplement'_of_coprime {G : Type u_1} [Group G] {H K : Subgroup G} [Finite G] (h1 : Nat.card H * Nat.card K = Nat.card G) (h2 : (Nat.card H).Coprime (Nat.card K)) :
                                      theorem Subgroup.isComplement'_stabilizer {G : Type u_1} [Group G] {H : Subgroup G} {α : Type u_2} [MulAction G α] (a : α) (h1 : ∀ (h : H), h a = ah = 1) (h2 : ∀ (g : G), ∃ (h : H), h g a = a) :