Documentation

Mathlib.GroupTheory.Complement

Complements #

In this file we define the complement of a subgroup.

Main definitions #

Main results #

def AddSubgroup.IsComplement {G : Type u_1} [AddGroup G] (S : Set G) (T : Set G) :

S and T are complements if (+) : S × T → G is a bijection

Equations
Instances For
    def Subgroup.IsComplement {G : Type u_1} [Group G] (S : Set G) (T : Set G) :

    S and T are complements if (*) : S × T → G is a bijection. This notion generalizes left transversals, right transversals, and complementary subgroups.

    Equations
    Instances For
      abbrev AddSubgroup.IsComplement' {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (K : AddSubgroup G) :

      H and K are complements if (+) : H × K → G is a bijection

      Equations
      Instances For
        @[inline, reducible]
        abbrev Subgroup.IsComplement' {G : Type u_1} [Group G] (H : Subgroup G) (K : Subgroup G) :

        H and K are complements if (*) : H × K → G is a bijection

        Equations
        Instances For
          def AddSubgroup.leftTransversals {G : Type u_1} [AddGroup G] (T : Set G) :
          Set (Set G)

          The set of left-complements of T : Set G

          Equations
          Instances For
            def Subgroup.leftTransversals {G : Type u_1} [Group G] (T : Set G) :
            Set (Set G)

            The set of left-complements of T : Set G

            Equations
            Instances For
              def AddSubgroup.rightTransversals {G : Type u_1} [AddGroup G] (S : Set G) :
              Set (Set G)

              The set of right-complements of S : Set G

              Equations
              Instances For
                def Subgroup.rightTransversals {G : Type u_1} [Group G] (S : Set G) :
                Set (Set G)

                The set of right-complements of S : Set G

                Equations
                Instances For
                  theorem AddSubgroup.isComplement_iff_existsUnique {G : Type u_1} [AddGroup G] {S : Set G} {T : Set G} :
                  AddSubgroup.IsComplement S T ∀ (g : G), ∃! x : S × T, x.1 + x.2 = g
                  theorem Subgroup.isComplement_iff_existsUnique {G : Type u_1} [Group G] {S : Set G} {T : Set G} :
                  Subgroup.IsComplement S T ∀ (g : G), ∃! x : S × T, x.1 * x.2 = g
                  theorem AddSubgroup.IsComplement.existsUnique {G : Type u_1} [AddGroup G] {S : Set G} {T : Set G} (h : AddSubgroup.IsComplement S T) (g : G) :
                  ∃! x : S × T, x.1 + x.2 = g
                  theorem Subgroup.IsComplement.existsUnique {G : Type u_1} [Group G] {S : Set G} {T : Set G} (h : Subgroup.IsComplement S T) (g : G) :
                  ∃! x : S × T, x.1 * x.2 = g
                  abbrev AddSubgroup.isComplement_univ_singleton.match_2 {G : Type u_1} [AddGroup G] {g : G} :
                  ∀ (x : Set.univ × {g}) (motive : (x_1 : Set.univ × {g}) → (fun (x : Set.univ × {g}) => x.1 + x.2) x_1 = (fun (x : Set.univ × {g}) => x.1 + x.2) xProp) (x_1 : Set.univ × {g}) (h : (fun (x : Set.univ × {g}) => x.1 + x.2) x_1 = (fun (x : Set.univ × {g}) => x.1 + x.2) x), (∀ (fst : Set.univ) (h : (fun (x : Set.univ × {g}) => x.1 + x.2) (fst, { val := g, property := }) = (fun (x : Set.univ × {g}) => x.1 + x.2) x), motive (fst, { val := g, property := }) h)motive x_1 h
                  Equations
                  • =
                  Instances For
                    abbrev AddSubgroup.isComplement_univ_singleton.match_1 {G : Type u_1} [AddGroup G] {g : G} :
                    ∀ (fst : Set.univ) (motive : (x : Set.univ × {g}) → (fun (x : Set.univ × {g}) => x.1 + x.2) (fst, { val := g, property := }) = (fun (x : Set.univ × {g}) => x.1 + x.2) xProp) (x : Set.univ × {g}) (h : (fun (x : Set.univ × {g}) => x.1 + x.2) (fst, { val := g, property := }) = (fun (x : Set.univ × {g}) => x.1 + x.2) x), (∀ (fst_1 : Set.univ) (h : (fun (x : Set.univ × {g}) => x.1 + x.2) (fst, { val := g, property := }) = (fun (x : Set.univ × {g}) => x.1 + x.2) (fst_1, { val := g, property := })), motive (fst_1, { val := g, property := }) h)motive x h
                    Equations
                    • =
                    Instances For
                      abbrev AddSubgroup.isComplement_singleton_univ.match_1 {G : Type u_1} [AddGroup G] {g : G} :
                      ∀ (snd : Set.univ) (motive : (x : {g} × Set.univ) → (fun (x : {g} × Set.univ) => x.1 + x.2) ({ val := g, property := }, snd) = (fun (x : {g} × Set.univ) => x.1 + x.2) xProp) (x : {g} × Set.univ) (h : (fun (x : {g} × Set.univ) => x.1 + x.2) ({ val := g, property := }, snd) = (fun (x : {g} × Set.univ) => x.1 + x.2) x), (∀ (snd_1 : Set.univ) (h : (fun (x : {g} × Set.univ) => x.1 + x.2) ({ val := g, property := }, snd) = (fun (x : {g} × Set.univ) => x.1 + x.2) ({ val := g, property := }, snd_1)), motive ({ val := g, property := }, snd_1) h)motive x h
                      Equations
                      • =
                      Instances For
                        abbrev AddSubgroup.isComplement_singleton_univ.match_2 {G : Type u_1} [AddGroup G] {g : G} :
                        ∀ (x : {g} × Set.univ) (motive : (x_1 : {g} × Set.univ) → (fun (x : {g} × Set.univ) => x.1 + x.2) x_1 = (fun (x : {g} × Set.univ) => x.1 + x.2) xProp) (x_1 : {g} × Set.univ) (h : (fun (x : {g} × Set.univ) => x.1 + x.2) x_1 = (fun (x : {g} × Set.univ) => x.1 + x.2) x), (∀ (snd : Set.univ) (h : (fun (x : {g} × Set.univ) => x.1 + x.2) ({ val := g, property := }, snd) = (fun (x : {g} × Set.univ) => x.1 + x.2) x), motive ({ val := g, property := }, snd) h)motive x_1 h
                        Equations
                        • =
                        Instances For
                          theorem AddSubgroup.isComplement_singleton_left {G : Type u_1} [AddGroup G] {S : Set G} {g : G} :
                          AddSubgroup.IsComplement {g} S S = Set.univ
                          theorem Subgroup.isComplement_singleton_left {G : Type u_1} [Group G] {S : Set G} {g : G} :
                          Subgroup.IsComplement {g} S S = Set.univ
                          theorem AddSubgroup.isComplement_singleton_right {G : Type u_1} [AddGroup G] {S : Set G} {g : G} :
                          AddSubgroup.IsComplement S {g} S = Set.univ
                          theorem Subgroup.isComplement_singleton_right {G : Type u_1} [Group G] {S : Set G} {g : G} :
                          Subgroup.IsComplement S {g} S = Set.univ
                          theorem AddSubgroup.isComplement_univ_left {G : Type u_1} [AddGroup G] {S : Set G} :
                          AddSubgroup.IsComplement Set.univ S ∃ (g : G), S = {g}
                          theorem Subgroup.isComplement_univ_left {G : Type u_1} [Group G] {S : Set G} :
                          Subgroup.IsComplement Set.univ S ∃ (g : G), S = {g}
                          theorem AddSubgroup.isComplement_univ_right {G : Type u_1} [AddGroup G] {S : Set G} :
                          AddSubgroup.IsComplement S Set.univ ∃ (g : G), S = {g}
                          theorem Subgroup.isComplement_univ_right {G : Type u_1} [Group G] {S : Set G} :
                          Subgroup.IsComplement S Set.univ ∃ (g : G), S = {g}
                          theorem AddSubgroup.IsComplement.add_eq {G : Type u_1} [AddGroup G] {S : Set G} {T : Set G} (h : AddSubgroup.IsComplement S T) :
                          S + T = Set.univ
                          theorem Subgroup.IsComplement.mul_eq {G : Type u_1} [Group G] {S : Set G} {T : Set G} (h : Subgroup.IsComplement S T) :
                          S * T = Set.univ
                          theorem Subgroup.IsComplement.card_mul_card {G : Type u_1} [Group G] {S : Set G} {T : Set G} (h : Subgroup.IsComplement S T) :
                          theorem AddSubgroup.mem_leftTransversals_iff_existsUnique_neg_add_mem {G : Type u_1} [AddGroup G] {S : Set G} {T : Set G} :
                          S AddSubgroup.leftTransversals T ∀ (g : G), ∃! s : S, -s + g T
                          theorem Subgroup.mem_leftTransversals_iff_existsUnique_inv_mul_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} :
                          S Subgroup.leftTransversals T ∀ (g : G), ∃! s : S, (s)⁻¹ * g T
                          theorem AddSubgroup.mem_rightTransversals_iff_existsUnique_add_neg_mem {G : Type u_1} [AddGroup G] {S : Set G} {T : Set G} :
                          S AddSubgroup.rightTransversals T ∀ (g : G), ∃! s : S, g + -s T
                          theorem Subgroup.mem_rightTransversals_iff_existsUnique_mul_inv_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} :
                          S Subgroup.rightTransversals T ∀ (g : G), ∃! s : S, g * (s)⁻¹ T
                          theorem AddSubgroup.range_mem_leftTransversals {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
                          theorem Subgroup.range_mem_leftTransversals {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
                          theorem AddSubgroup.exists_left_transversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
                          ∃ S ∈ AddSubgroup.leftTransversals H, g S
                          theorem Subgroup.exists_left_transversal {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
                          ∃ S ∈ Subgroup.leftTransversals H, g S
                          theorem Subgroup.exists_right_transversal {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
                          ∃ S ∈ Subgroup.rightTransversals H, g S
                          theorem AddSubgroup.exists_left_transversal_of_le {G : Type u_1} [AddGroup G] {H' : AddSubgroup G} {H : AddSubgroup G} (h : H' H) :
                          ∃ (S : Set G), S + H' = H Nat.card S * Nat.card H' = Nat.card H

                          Given two subgroups H' ⊆ H, there exists a transversal to H' inside H

                          theorem Subgroup.exists_left_transversal_of_le {G : Type u_1} [Group G] {H' : Subgroup G} {H : Subgroup G} (h : H' H) :
                          ∃ (S : Set G), S * H' = H Nat.card S * Nat.card H' = Nat.card H

                          Given two subgroups H' ⊆ H, there exists a left transversal to H' inside H.

                          theorem AddSubgroup.exists_right_transversal_of_le {G : Type u_1} [AddGroup G] {H' : AddSubgroup G} {H : AddSubgroup G} (h : H' H) :
                          ∃ (S : Set G), H' + S = H Nat.card H' * Nat.card S = Nat.card H

                          Given two subgroups H' ⊆ H, there exists a transversal to H' inside H

                          theorem Subgroup.exists_right_transversal_of_le {G : Type u_1} [Group G] {H' : Subgroup G} {H : Subgroup G} (h : H' H) :
                          ∃ (S : Set G), H' * S = H Nat.card H' * Nat.card S = Nat.card H

                          Given two subgroups H' ⊆ H, there exists a right transversal to H' inside H.

                          noncomputable def Subgroup.IsComplement.equiv {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) :
                          G S × T

                          The equivalence G ≃ S × T, such that the inverse is (*) : S × T → G

                          Equations
                          Instances For
                            @[simp]
                            theorem Subgroup.IsComplement.equiv_symm_apply {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) (x : S × T) :
                            (Subgroup.IsComplement.equiv hST).symm x = x.1 * x.2
                            @[simp]
                            theorem Subgroup.IsComplement.equiv_fst_mul_equiv_snd {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) (g : G) :
                            theorem Subgroup.IsComplement.equiv_fst_eq_mul_inv {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) (g : G) :
                            theorem Subgroup.IsComplement.equiv_snd_eq_inv_mul {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) (g : G) :
                            theorem Subgroup.IsComplement.equiv_fst_eq_iff_leftCosetEquivalence {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : Subgroup.IsComplement S K) {g₁ : G} {g₂ : G} :
                            theorem Subgroup.IsComplement.equiv_snd_eq_iff_rightCosetEquivalence {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : Subgroup.IsComplement (H) T) {g₁ : G} {g₂ : G} :
                            theorem Subgroup.IsComplement.equiv_fst_eq_self_of_mem_of_one_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 T) (hg : g S) :
                            ((Subgroup.IsComplement.equiv hST) g).1 = { val := g, property := hg }
                            theorem Subgroup.IsComplement.equiv_snd_eq_self_of_mem_of_one_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 S) (hg : g T) :
                            ((Subgroup.IsComplement.equiv hST) g).2 = { val := g, property := hg }
                            theorem Subgroup.IsComplement.equiv_snd_eq_one_of_mem_of_one_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 T) (hg : g S) :
                            ((Subgroup.IsComplement.equiv hST) g).2 = { val := 1, property := h1 }
                            theorem Subgroup.IsComplement.equiv_fst_eq_one_of_mem_of_one_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 S) (hg : g T) :
                            ((Subgroup.IsComplement.equiv hST) g).1 = { val := 1, property := h1 }
                            @[simp]
                            theorem Subgroup.IsComplement.equiv_mul_right {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : Subgroup.IsComplement S K) (g : G) (k : K) :
                            theorem Subgroup.IsComplement.equiv_mul_right_of_mem {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : Subgroup.IsComplement S K) {g : G} {k : G} (h : k K) :
                            (Subgroup.IsComplement.equiv hSK) (g * k) = (((Subgroup.IsComplement.equiv hSK) g).1, ((Subgroup.IsComplement.equiv hSK) g).2 * { val := k, property := h })
                            @[simp]
                            theorem Subgroup.IsComplement.equiv_mul_left {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : Subgroup.IsComplement (H) T) (h : H) (g : G) :
                            theorem Subgroup.IsComplement.equiv_mul_left_of_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : Subgroup.IsComplement (H) T) {h : G} {g : G} (hh : h H) :
                            (Subgroup.IsComplement.equiv hHT) (h * g) = ({ val := h, property := hh } * ((Subgroup.IsComplement.equiv hHT) g).1, ((Subgroup.IsComplement.equiv hHT) g).2)
                            theorem Subgroup.IsComplement.equiv_one {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) (hs1 : 1 S) (ht1 : 1 T) :
                            (Subgroup.IsComplement.equiv hST) 1 = ({ val := 1, property := hs1 }, { val := 1, property := ht1 })
                            theorem Subgroup.IsComplement.equiv_fst_eq_self_iff_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 T) :
                            ((Subgroup.IsComplement.equiv hST) g).1 = g g S
                            theorem Subgroup.IsComplement.equiv_snd_eq_self_iff_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 S) :
                            ((Subgroup.IsComplement.equiv hST) g).2 = g g T
                            theorem Subgroup.IsComplement.coe_equiv_fst_eq_one_iff_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 S) :
                            ((Subgroup.IsComplement.equiv hST) g).1 = 1 g T
                            theorem Subgroup.IsComplement.coe_equiv_snd_eq_one_iff_mem {G : Type u_1} [Group G] {S : Set G} {T : Set G} (hST : Subgroup.IsComplement S T) {g : G} (h1 : 1 T) :
                            ((Subgroup.IsComplement.equiv hST) g).2 = 1 g S
                            noncomputable def AddSubgroup.MemLeftTransversals.toEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : S AddSubgroup.leftTransversals H) :
                            G H S

                            A left transversal is in bijection with left cosets.

                            Equations
                            Instances For
                              noncomputable def Subgroup.MemLeftTransversals.toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : S Subgroup.leftTransversals H) :
                              G H S

                              A left transversal is in bijection with left cosets.

                              Equations
                              Instances For
                                theorem AddSubgroup.MemLeftTransversals.toEquiv_apply {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                                theorem Subgroup.MemLeftTransversals.toEquiv_apply {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                                noncomputable def AddSubgroup.MemLeftTransversals.toFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : S AddSubgroup.leftTransversals H) :
                                GS

                                A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                                Equations
                                Instances For
                                  noncomputable def Subgroup.MemLeftTransversals.toFun {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : S Subgroup.leftTransversals H) :
                                  GS

                                  A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                                  Equations
                                  Instances For

                                    A right transversal is in bijection with right cosets.

                                    Equations
                                    Instances For
                                      noncomputable def Subgroup.MemRightTransversals.toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : S Subgroup.rightTransversals H) :

                                      A right transversal is in bijection with right cosets.

                                      Equations
                                      Instances For
                                        noncomputable def AddSubgroup.MemRightTransversals.toFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : S AddSubgroup.rightTransversals H) :
                                        GS

                                        A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                                        Equations
                                        Instances For
                                          noncomputable def Subgroup.MemRightTransversals.toFun {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : S Subgroup.rightTransversals H) :
                                          GS

                                          A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                                          Equations
                                          Instances For
                                            Equations
                                            • AddSubgroup.instAddActionElemSetLeftTransversalsCoeAddSubgroupInstSetLikeAddSubgroupToAddMonoidToSubNegAddMonoid = AddAction.mk
                                            Equations
                                            • Subgroup.instMulActionElemSetLeftTransversalsCoeSubgroupInstSetLikeSubgroupToMonoidToDivInvMonoid = MulAction.mk
                                            theorem Subgroup.smul_toFun {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (T : (Subgroup.leftTransversals H)) (g : G) :
                                            theorem Subgroup.smul_toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (T : (Subgroup.leftTransversals H)) (q : G H) :
                                            Equations
                                            • AddSubgroup.instInhabitedElemSetLeftTransversalsCoeAddSubgroupInstSetLikeAddSubgroup = { default := { val := Set.range Quotient.out', property := } }
                                            Equations
                                            • Subgroup.instInhabitedElemSetLeftTransversalsCoeSubgroupInstSetLikeSubgroup = { default := { val := Set.range Quotient.out', property := } }
                                            Equations
                                            • AddSubgroup.instInhabitedElemSetRightTransversalsCoeAddSubgroupInstSetLikeAddSubgroup = { default := { val := Set.range Quotient.out', property := } }
                                            Equations
                                            • Subgroup.instInhabitedElemSetRightTransversalsCoeSubgroupInstSetLikeSubgroup = { default := { val := Set.range Quotient.out', property := } }
                                            theorem Subgroup.IsComplement.card_mul {G : Type u_1} [Group G] {S : Set G} {T : Set G} [Fintype G] [Fintype S] [Fintype T] (h : Subgroup.IsComplement S T) :
                                            theorem Subgroup.isComplement'_of_disjoint_and_mul_eq_univ {G : Type u_1} [Group G] {H : Subgroup G} {K : Subgroup G} (h1 : Disjoint H K) (h2 : H * K = Set.univ) :
                                            theorem Subgroup.isComplement'_stabilizer {G : Type u_1} [Group G] {H : Subgroup G} {α : Type u_2} [MulAction G α] (a : α) (h1 : ∀ (h : H), h a = ah = 1) (h2 : ∀ (g : G), ∃ (h : H), h g a = a) :
                                            noncomputable def Subgroup.quotientEquivSigmaZMod {G : Type u} [Group G] (H : Subgroup G) (g : G) :
                                            G H (q : MulAction.orbitRel.Quotient ((Subgroup.zpowers g)) (G H)) × ZMod (Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out' q))

                                            Partition G ⧸ H into orbits of the action of g : G.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              theorem Subgroup.quotientEquivSigmaZMod_symm_apply {G : Type u} [Group G] (H : Subgroup G) (g : G) (q : MulAction.orbitRel.Quotient ((Subgroup.zpowers g)) (G H)) (k : ZMod (Function.minimalPeriod (fun (x : G H) => g x) (Quotient.out' q))) :
                                              (Subgroup.quotientEquivSigmaZMod H g).symm { fst := q, snd := k } = g ^ ZMod.cast k Quotient.out' q
                                              theorem Subgroup.quotientEquivSigmaZMod_apply {G : Type u} [Group G] (H : Subgroup G) (g : G) (q : MulAction.orbitRel.Quotient ((Subgroup.zpowers g)) (G H)) (k : ) :
                                              (Subgroup.quotientEquivSigmaZMod H g) (g ^ k Quotient.out' q) = { fst := q, snd := k }
                                              noncomputable def Subgroup.transferFunction {G : Type u} [Group G] (H : Subgroup G) (g : G) :
                                              G HG

                                              The transfer transversal as a function. Given a ⟨g⟩-orbit q₀, g • q₀, ..., g ^ (m - 1) • q₀ in G ⧸ H, an element g ^ k • q₀ is mapped to g ^ k • g₀ for a fixed choice of representative g₀ of q₀.

                                              Equations
                                              Instances For
                                                theorem Subgroup.coe_transferFunction {G : Type u} [Group G] (H : Subgroup G) (g : G) (q : G H) :
                                                def Subgroup.transferSet {G : Type u} [Group G] (H : Subgroup G) (g : G) :
                                                Set G

                                                The transfer transversal as a set. Contains elements of the form g ^ k • g₀ for fixed choices of representatives g₀ of fixed choices of representatives q₀ of ⟨g⟩-orbits in G ⧸ H.

                                                Equations
                                                Instances For
                                                  def Subgroup.transferTransversal {G : Type u} [Group G] (H : Subgroup G) (g : G) :

                                                  The transfer transversal. Contains elements of the form g ^ k • g₀ for fixed choices of representatives g₀ of fixed choices of representatives q₀ of ⟨g⟩-orbits in G ⧸ H.

                                                  Equations
                                                  Instances For