Documentation

Mathlib.GroupTheory.Complement

Complements #

In this file we define the complement of a subgroup.

Main definitions #

Main results #

def Subgroup.IsComplement {G : Type u_1} [Group G] (S T : Set G) :

S and T are complements if (*) : S × T → G is a bijection. This notion generalizes left transversals, right transversals, and complementary subgroups.

Equations
Instances For
    def AddSubgroup.IsComplement {G : Type u_1} [AddGroup G] (S T : Set G) :

    S and T are complements if (+) : S × T → G is a bijection

    Equations
    Instances For
      @[reducible, inline]
      abbrev Subgroup.IsComplement' {G : Type u_1} [Group G] (H K : Subgroup G) :

      H and K are complements if (*) : H × K → G is a bijection

      Equations
      Instances For
        @[reducible, inline]
        abbrev AddSubgroup.IsComplement' {G : Type u_1} [AddGroup G] (H K : AddSubgroup G) :

        H and K are complements if (+) : H × K → G is a bijection

        Equations
        Instances For
          @[deprecated Subgroup.IsComplement (since := "2024-12-18")]
          def Subgroup.leftTransversals {G : Type u_1} [Group G] (T : Set G) :
          Set (Set G)

          The set of left-complements of T : Set G

          Equations
          Instances For
            @[deprecated Subgroup.IsComplement (since := "2024-12-18")]
            def AddSubgroup.leftTransversals {G : Type u_1} [AddGroup G] (T : Set G) :
            Set (Set G)

            The set of left-complements of T : Set G

            Equations
            Instances For
              @[deprecated Subgroup.IsComplement (since := "2024-12-18")]
              def Subgroup.rightTransversals {G : Type u_1} [Group G] (S : Set G) :
              Set (Set G)

              The set of right-complements of S : Set G

              Equations
              Instances For
                @[deprecated Subgroup.IsComplement (since := "2024-12-18")]
                def AddSubgroup.rightTransversals {G : Type u_1} [AddGroup G] (S : Set G) :
                Set (Set G)

                The set of right-complements of S : Set G

                Equations
                Instances For
                  theorem Subgroup.isComplement'_def {G : Type u_1} [Group G] {H K : Subgroup G} :
                  H.IsComplement' K IsComplement H K
                  theorem AddSubgroup.isComplement'_def {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} :
                  H.IsComplement' K IsComplement H K
                  theorem Subgroup.isComplement_iff_existsUnique {G : Type u_1} [Group G] {S T : Set G} :
                  IsComplement S T ∀ (g : G), ∃! x : S × T, x.1 * x.2 = g
                  theorem AddSubgroup.isComplement_iff_existsUnique {G : Type u_1} [AddGroup G] {S T : Set G} :
                  IsComplement S T ∀ (g : G), ∃! x : S × T, x.1 + x.2 = g
                  theorem Subgroup.IsComplement.existsUnique {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) (g : G) :
                  ∃! x : S × T, x.1 * x.2 = g
                  theorem AddSubgroup.IsComplement.existsUnique {G : Type u_1} [AddGroup G] {S T : Set G} (h : IsComplement S T) (g : G) :
                  ∃! x : S × T, x.1 + x.2 = g
                  theorem Subgroup.IsComplement'.symm {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                  K.IsComplement' H
                  theorem AddSubgroup.IsComplement'.symm {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} (h : H.IsComplement' K) :
                  K.IsComplement' H
                  theorem Subgroup.isComplement'_comm {G : Type u_1} [Group G] {H K : Subgroup G} :
                  H.IsComplement' K K.IsComplement' H
                  theorem AddSubgroup.isComplement'_comm {G : Type u_1} [AddGroup G] {H K : AddSubgroup G} :
                  H.IsComplement' K K.IsComplement' H
                  theorem Subgroup.isComplement_singleton_left {G : Type u_1} [Group G] {S : Set G} {g : G} :
                  theorem Subgroup.isComplement_singleton_right {G : Type u_1} [Group G] {S : Set G} {g : G} :
                  theorem Subgroup.isComplement_univ_left {G : Type u_1} [Group G] {S : Set G} :
                  IsComplement Set.univ S ∃ (g : G), S = {g}
                  theorem AddSubgroup.isComplement_univ_left {G : Type u_1} [AddGroup G] {S : Set G} :
                  IsComplement Set.univ S ∃ (g : G), S = {g}
                  theorem Subgroup.isComplement_univ_right {G : Type u_1} [Group G] {S : Set G} :
                  IsComplement S Set.univ ∃ (g : G), S = {g}
                  theorem AddSubgroup.isComplement_univ_right {G : Type u_1} [AddGroup G] {S : Set G} :
                  IsComplement S Set.univ ∃ (g : G), S = {g}
                  theorem Subgroup.IsComplement.mul_eq {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) :
                  theorem AddSubgroup.IsComplement.add_eq {G : Type u_1} [AddGroup G] {S T : Set G} (h : IsComplement S T) :
                  theorem Subgroup.IsComplement.nonempty_left {G : Type u_1} [Group G] {S T : Set G} (hst : IsComplement S T) :
                  S.Nonempty
                  theorem AddSubgroup.IsComplement.nonempty_left {G : Type u_1} [AddGroup G] {S T : Set G} (hst : IsComplement S T) :
                  S.Nonempty
                  theorem Subgroup.IsComplement.nonempty_right {G : Type u_1} [Group G] {S T : Set G} (hst : IsComplement S T) :
                  T.Nonempty
                  theorem AddSubgroup.IsComplement.nonempty_right {G : Type u_1} [AddGroup G] {S T : Set G} (hst : IsComplement S T) :
                  T.Nonempty
                  theorem Subgroup.IsComplement.pairwiseDisjoint_smul {G : Type u_1} [Group G] {S T : Set G} (hst : IsComplement S T) :
                  S.PairwiseDisjoint fun (x : G) => x T
                  theorem AddSubgroup.IsComplement.pairwiseDisjoint_vadd {G : Type u_1} [AddGroup G] {S T : Set G} (hst : IsComplement S T) :
                  S.PairwiseDisjoint fun (x : G) => x +ᵥ T
                  theorem Subgroup.IsComplement.card_mul_card {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) :
                  theorem Subgroup.isComplement'_top_bot {G : Type u_1} [Group G] :
                  .IsComplement'
                  theorem AddSubgroup.isComplement'_top_bot {G : Type u_1} [AddGroup G] :
                  .IsComplement'
                  theorem Subgroup.isComplement'_bot_top {G : Type u_1} [Group G] :
                  .IsComplement'
                  theorem AddSubgroup.isComplement'_bot_top {G : Type u_1} [AddGroup G] :
                  .IsComplement'
                  @[simp]
                  theorem Subgroup.isComplement'_bot_left {G : Type u_1} [Group G] {H : Subgroup G} :
                  .IsComplement' H H =
                  @[simp]
                  theorem AddSubgroup.isComplement'_bot_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
                  .IsComplement' H H =
                  @[simp]
                  theorem Subgroup.isComplement'_bot_right {G : Type u_1} [Group G] {H : Subgroup G} :
                  H.IsComplement' H =
                  @[simp]
                  theorem AddSubgroup.isComplement'_bot_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
                  H.IsComplement' H =
                  @[simp]
                  theorem Subgroup.isComplement'_top_left {G : Type u_1} [Group G] {H : Subgroup G} :
                  .IsComplement' H H =
                  @[simp]
                  theorem AddSubgroup.isComplement'_top_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
                  .IsComplement' H H =
                  @[simp]
                  theorem Subgroup.isComplement'_top_right {G : Type u_1} [Group G] {H : Subgroup G} :
                  H.IsComplement' H =
                  @[simp]
                  theorem AddSubgroup.isComplement'_top_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} :
                  H.IsComplement' H =
                  theorem Subgroup.isComplement_iff_existsUnique_inv_mul_mem {G : Type u_1} [Group G] {S T : Set G} :
                  IsComplement S T ∀ (g : G), ∃! s : S, (↑s)⁻¹ * g T
                  theorem AddSubgroup.isComplement_iff_existsUnique_neg_add_mem {G : Type u_1} [AddGroup G] {S T : Set G} :
                  IsComplement S T ∀ (g : G), ∃! s : S, -s + g T
                  @[deprecated Subgroup.isComplement_iff_existsUnique_inv_mul_mem (since := "2024-12-18")]
                  theorem Subgroup.mem_leftTransversals_iff_existsUnique_inv_mul_mem {G : Type u_1} [Group G] {S T : Set G} :
                  S leftTransversals T ∀ (g : G), ∃! s : S, (↑s)⁻¹ * g T
                  @[deprecated Subgroup.isComplement_iff_existsUnique_inv_mul_mem (since := "2024-12-18")]
                  theorem AddSubgroup.mem_leftTransversals_iff_existsUnique_neg_add_mem {G : Type u_1} [AddGroup G] {S T : Set G} :
                  S leftTransversals T ∀ (g : G), ∃! s : S, -s + g T
                  theorem Subgroup.isComplement_iff_existsUnique_mul_inv_mem {G : Type u_1} [Group G] {S T : Set G} :
                  IsComplement S T ∀ (g : G), ∃! t : T, g * (↑t)⁻¹ S
                  theorem AddSubgroup.isComplement_iff_existsUnique_add_neg_mem {G : Type u_1} [AddGroup G] {S T : Set G} :
                  IsComplement S T ∀ (g : G), ∃! t : T, g + -t S
                  @[deprecated Subgroup.isComplement_iff_existsUnique_mul_inv_mem (since := "2024-12-18")]
                  theorem Subgroup.mem_rightTransversals_iff_existsUnique_mul_inv_mem {G : Type u_1} [Group G] {S T : Set G} :
                  S rightTransversals T ∀ (g : G), ∃! s : S, g * (↑s)⁻¹ T
                  @[deprecated Subgroup.isComplement_iff_existsUnique_mul_inv_mem (since := "2024-12-18")]
                  theorem AddSubgroup.mem_rightTransversals_iff_existsUnique_add_neg_mem {G : Type u_1} [AddGroup G] {S T : Set G} :
                  S rightTransversals T ∀ (g : G), ∃! s : S, g + -s T
                  theorem Subgroup.isComplement_subgroup_right_iff_existsUnique_quotientGroupMk {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} :
                  IsComplement S H ∀ (q : G H), ∃! s : S, s = q
                  theorem AddSubgroup.isComplement_addSubgroup_right_iff_existsUnique_quotientAddGroupMk {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} :
                  IsComplement S H ∀ (q : G H), ∃! s : S, s = q
                  @[deprecated Subgroup.isComplement_subgroup_right_iff_existsUnique_quotientGroupMk (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_right_iff_existsUnique_quotientGroupMk (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_left_iff_existsUnique_quotientMk'' (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_left_iff_existsUnique_quotientMk'' (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_right_iff_bijective (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_right_iff_bijective (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_left_iff_bijective (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_subgroup_left_iff_bijective (since := "2024-12-18")]
                  theorem Subgroup.IsComplement.card_left {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : IsComplement S H) :
                  Nat.card S = H.index
                  theorem AddSubgroup.IsComplement.card_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : IsComplement S H) :
                  Nat.card S = H.index
                  @[deprecated Subgroup.IsComplement.card_left (since := "2024-12-18")]
                  theorem Subgroup.card_left_transversal {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : S leftTransversals H) :
                  Nat.card S = H.index
                  @[deprecated Subgroup.IsComplement.card_left (since := "2024-12-18")]
                  theorem AddSubgroup.card_left_transversal {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : S leftTransversals H) :
                  Nat.card S = H.index
                  theorem Subgroup.IsComplement.card_right {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (h : IsComplement (↑H) T) :
                  Nat.card T = H.index
                  theorem AddSubgroup.IsComplement.card_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (h : IsComplement (↑H) T) :
                  Nat.card T = H.index
                  @[deprecated Subgroup.IsComplement.card_right (since := "2024-12-18")]
                  theorem Subgroup.card_right_transversal {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : S rightTransversals H) :
                  Nat.card S = H.index
                  @[deprecated Subgroup.IsComplement.card_right (since := "2024-12-18")]
                  theorem AddSubgroup.card_right_transversal {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : S rightTransversals H) :
                  Nat.card S = H.index
                  theorem Subgroup.isComplement_range_left {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
                  theorem AddSubgroup.isComplement_range_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
                  @[deprecated Subgroup.isComplement_range_left (since := "2024-12-18")]
                  theorem Subgroup.range_mem_leftTransversals {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
                  @[deprecated Subgroup.isComplement_range_left (since := "2024-12-18")]
                  theorem AddSubgroup.range_mem_leftTransversals {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) :
                  @[deprecated Subgroup.isComplement_range_right (since := "2024-12-18")]
                  @[deprecated Subgroup.isComplement_range_right (since := "2024-12-18")]
                  theorem Subgroup.exists_isComplement_left {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
                  ∃ (S : Set G), IsComplement S H g S
                  theorem AddSubgroup.exists_isComplement_left {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
                  ∃ (S : Set G), IsComplement S H g S
                  @[deprecated Subgroup.exists_isComplement_left (since := "2024-12-18")]
                  theorem Subgroup.exists_left_transversal {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
                  SleftTransversals H, g S
                  @[deprecated Subgroup.exists_isComplement_left (since := "2024-12-18")]
                  theorem AddSubgroup.exists_left_transversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
                  SleftTransversals H, g S
                  theorem Subgroup.exists_isComplement_right {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
                  ∃ (T : Set G), IsComplement (↑H) T g T
                  theorem AddSubgroup.exists_isComplement_right {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
                  ∃ (T : Set G), IsComplement (↑H) T g T
                  @[deprecated Subgroup.exists_isComplement_right (since := "2024-12-18")]
                  theorem Subgroup.exists_right_transversal {G : Type u_1} [Group G] (H : Subgroup G) (g : G) :
                  SrightTransversals H, g S
                  @[deprecated Subgroup.exists_isComplement_right (since := "2024-12-18")]
                  theorem AddSubgroup.exists_right_transversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) (g : G) :
                  SrightTransversals H, g S
                  theorem Subgroup.exists_left_transversal_of_le {G : Type u_1} [Group G] {H' H : Subgroup G} (h : H' H) :
                  ∃ (S : Set G), S * H' = H Nat.card S * Nat.card H' = Nat.card H

                  Given two subgroups H' ⊆ H, there exists a left transversal to H' inside H.

                  theorem AddSubgroup.exists_left_transversal_of_le {G : Type u_1} [AddGroup G] {H' H : AddSubgroup G} (h : H' H) :
                  ∃ (S : Set G), S + H' = H Nat.card S * Nat.card H' = Nat.card H

                  Given two subgroups H' ⊆ H, there exists a transversal to H' inside H

                  theorem Subgroup.exists_right_transversal_of_le {G : Type u_1} [Group G] {H' H : Subgroup G} (h : H' H) :
                  ∃ (S : Set G), H' * S = H Nat.card H' * Nat.card S = Nat.card H

                  Given two subgroups H' ⊆ H, there exists a right transversal to H' inside H.

                  theorem AddSubgroup.exists_right_transversal_of_le {G : Type u_1} [AddGroup G] {H' H : AddSubgroup G} (h : H' H) :
                  ∃ (S : Set G), H' + S = H Nat.card H' * Nat.card S = Nat.card H

                  Given two subgroups H' ⊆ H, there exists a transversal to H' inside H

                  noncomputable def Subgroup.IsComplement.equiv {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) :
                  G S × T

                  The equivalence G ≃ S × T, such that the inverse is (*) : S × T → G

                  Equations
                  Instances For
                    @[simp]
                    theorem Subgroup.IsComplement.equiv_symm_apply {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (x : S × T) :
                    hST.equiv.symm x = x.1 * x.2
                    @[simp]
                    theorem Subgroup.IsComplement.equiv_fst_mul_equiv_snd {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (g : G) :
                    (hST.equiv g).1 * (hST.equiv g).2 = g
                    theorem Subgroup.IsComplement.equiv_fst_eq_mul_inv {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (g : G) :
                    (hST.equiv g).1 = g * (↑(hST.equiv g).2)⁻¹
                    theorem Subgroup.IsComplement.equiv_snd_eq_inv_mul {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (g : G) :
                    (hST.equiv g).2 = (↑(hST.equiv g).1)⁻¹ * g
                    theorem Subgroup.IsComplement.equiv_fst_eq_iff_leftCosetEquivalence {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) {g₁ g₂ : G} :
                    (hSK.equiv g₁).1 = (hSK.equiv g₂).1 LeftCosetEquivalence (↑K) g₁ g₂
                    theorem Subgroup.IsComplement.equiv_snd_eq_iff_rightCosetEquivalence {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) {g₁ g₂ : G} :
                    (hHT.equiv g₁).2 = (hHT.equiv g₂).2 RightCosetEquivalence (↑H) g₁ g₂
                    theorem Subgroup.IsComplement.leftCosetEquivalence_equiv_fst {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) (g : G) :
                    LeftCosetEquivalence (↑K) g (hSK.equiv g).1
                    theorem Subgroup.IsComplement.rightCosetEquivalence_equiv_snd {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) (g : G) :
                    RightCosetEquivalence (↑H) g (hHT.equiv g).2
                    theorem Subgroup.IsComplement.equiv_fst_eq_self_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) (hg : g S) :
                    (hST.equiv g).1 = g, hg
                    theorem Subgroup.IsComplement.equiv_snd_eq_self_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) (hg : g T) :
                    (hST.equiv g).2 = g, hg
                    theorem Subgroup.IsComplement.equiv_snd_eq_one_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) (hg : g S) :
                    (hST.equiv g).2 = 1, h1
                    theorem Subgroup.IsComplement.equiv_fst_eq_one_of_mem_of_one_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) (hg : g T) :
                    (hST.equiv g).1 = 1, h1
                    @[simp]
                    theorem Subgroup.IsComplement.equiv_mul_right {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) (g : G) (k : K) :
                    hSK.equiv (g * k) = ((hSK.equiv g).1, (hSK.equiv g).2 * k)
                    theorem Subgroup.IsComplement.equiv_mul_right_of_mem {G : Type u_1} [Group G] {K : Subgroup G} {S : Set G} (hSK : IsComplement S K) {g k : G} (h : k K) :
                    hSK.equiv (g * k) = ((hSK.equiv g).1, (hSK.equiv g).2 * k, h)
                    @[simp]
                    theorem Subgroup.IsComplement.equiv_mul_left {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) (h : H) (g : G) :
                    hHT.equiv (h * g) = (h * (hHT.equiv g).1, (hHT.equiv g).2)
                    theorem Subgroup.IsComplement.equiv_mul_left_of_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hHT : IsComplement (↑H) T) {h g : G} (hh : h H) :
                    hHT.equiv (h * g) = (h, hh * (hHT.equiv g).1, (hHT.equiv g).2)
                    theorem Subgroup.IsComplement.equiv_one {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) (hs1 : 1 S) (ht1 : 1 T) :
                    hST.equiv 1 = (1, hs1, 1, ht1)
                    theorem Subgroup.IsComplement.equiv_fst_eq_self_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) :
                    (hST.equiv g).1 = g g S
                    theorem Subgroup.IsComplement.equiv_snd_eq_self_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) :
                    (hST.equiv g).2 = g g T
                    theorem Subgroup.IsComplement.coe_equiv_fst_eq_one_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 S) :
                    (hST.equiv g).1 = 1 g T
                    theorem Subgroup.IsComplement.coe_equiv_snd_eq_one_iff_mem {G : Type u_1} [Group G] {S T : Set G} (hST : IsComplement S T) {g : G} (h1 : 1 T) :
                    (hST.equiv g).2 = 1 g S
                    noncomputable def Subgroup.IsComplement.leftQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) :
                    G H S

                    A left transversal is in bijection with left cosets.

                    Equations
                    Instances For
                      noncomputable def AddSubgroup.IsComplement.leftQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) :
                      G H S

                      A left transversal is in bijection with left cosets.

                      Equations
                      Instances For
                        @[deprecated Subgroup.IsComplement.leftQuotientEquiv (since := "2024-12-28")]
                        def Subgroup.MemLeftTransversals.toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) :
                        G H S

                        Alias of Subgroup.IsComplement.leftQuotientEquiv.


                        A left transversal is in bijection with left cosets.

                        Equations
                        Instances For
                          theorem Subgroup.IsComplement.finite_left_iff {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : IsComplement S H) :
                          Finite S H.FiniteIndex

                          A left transversal is finite iff the subgroup has finite index.

                          theorem AddSubgroup.IsComplement.finite_left_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (h : IsComplement S H) :
                          Finite S H.FiniteIndex

                          A left transversal is finite iff the subgroup has finite index.

                          @[deprecated Subgroup.IsComplement.finite_left_iff (since := "2024-12-28")]
                          theorem Subgroup.MemLeftTransversals.finite_iff {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (h : IsComplement S H) :
                          Finite S H.FiniteIndex

                          Alias of Subgroup.IsComplement.finite_left_iff.


                          A left transversal is finite iff the subgroup has finite index.

                          theorem Subgroup.IsComplement.finite_left {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} [H.FiniteIndex] (hS : IsComplement S H) :
                          S.Finite
                          theorem AddSubgroup.IsComplement.finite_left {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} [H.FiniteIndex] (hS : IsComplement S H) :
                          S.Finite
                          theorem Subgroup.IsComplement.quotientGroupMk_leftQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (q : G H) :
                          Quotient.mk'' (hS.leftQuotientEquiv q) = q
                          theorem AddSubgroup.IsComplement.quotientAddGroupMk_leftQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) (q : G H) :
                          Quotient.mk'' (hS.leftQuotientEquiv q) = q
                          @[deprecated Subgroup.IsComplement.quotientGroupMk_leftQuotientEquiv (since := "2024-12-28")]
                          theorem Subgroup.MemLeftTransversals.mk''_toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (q : G H) :
                          Quotient.mk'' (hS.leftQuotientEquiv q) = q

                          Alias of Subgroup.IsComplement.quotientGroupMk_leftQuotientEquiv.

                          theorem Subgroup.IsComplement.leftQuotientEquiv_apply {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                          (.leftQuotientEquiv q) = f q
                          theorem AddSubgroup.IsComplement.leftQuotientEquiv_apply {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                          (.leftQuotientEquiv q) = f q
                          @[deprecated Subgroup.IsComplement.leftQuotientEquiv_apply (since := "2024-12-28")]
                          theorem Subgroup.MemLeftTransversals.toEquiv_apply {G : Type u_1} [Group G] {H : Subgroup G} {f : G HG} (hf : ∀ (q : G H), (f q) = q) (q : G H) :
                          (.leftQuotientEquiv q) = f q

                          Alias of Subgroup.IsComplement.leftQuotientEquiv_apply.

                          noncomputable def Subgroup.IsComplement.toLeftFun {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) :
                          GS

                          A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                          Equations
                          Instances For
                            noncomputable def AddSubgroup.IsComplement.toLeftFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) :
                            GS

                            A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                            Equations
                            Instances For
                              @[deprecated Subgroup.IsComplement.toLeftFun (since := "2024-12-28")]
                              def Subgroup.MemLeftTransversals.toFun {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) :
                              GS

                              Alias of Subgroup.IsComplement.toLeftFun.


                              A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset.

                              Equations
                              Instances For
                                theorem Subgroup.IsComplement.inv_toLeftFun_mul_mem {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                                (↑(hS.toLeftFun g))⁻¹ * g H
                                theorem AddSubgroup.IsComplement.neg_toLeftFun_add_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                                -(hS.toLeftFun g) + g H
                                @[deprecated Subgroup.IsComplement.inv_toLeftFun_mul_mem (since := "2024-12-28")]
                                theorem Subgroup.MemLeftTransversals.inv_toFun_mul_mem {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                                (↑(hS.toLeftFun g))⁻¹ * g H

                                Alias of Subgroup.IsComplement.inv_toLeftFun_mul_mem.

                                theorem Subgroup.IsComplement.inv_mul_toLeftFun_mem {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                                g⁻¹ * (hS.toLeftFun g) H
                                theorem AddSubgroup.IsComplement.neg_add_toLeftFun_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                                -g + (hS.toLeftFun g) H
                                @[deprecated Subgroup.IsComplement.inv_mul_toLeftFun_mem (since := "2024-12-28")]
                                theorem Subgroup.MemLeftTransversals.inv_mul_toFun_mem {G : Type u_1} [Group G] {H : Subgroup G} {S : Set G} (hS : IsComplement S H) (g : G) :
                                g⁻¹ * (hS.toLeftFun g) H

                                Alias of Subgroup.IsComplement.inv_mul_toLeftFun_mem.

                                noncomputable def Subgroup.IsComplement.rightQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) :

                                A right transversal is in bijection with right cosets.

                                Equations
                                Instances For
                                  noncomputable def AddSubgroup.IsComplement.rightQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) :

                                  A right transversal is in bijection with right cosets.

                                  Equations
                                  Instances For
                                    @[deprecated Subgroup.IsComplement.rightQuotientEquiv (since := "2024-12-28")]
                                    def Subgroup.MemRightTransversals.toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) :

                                    Alias of Subgroup.IsComplement.rightQuotientEquiv.


                                    A right transversal is in bijection with right cosets.

                                    Equations
                                    Instances For
                                      theorem Subgroup.IsComplement.finite_right_iff {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (h : IsComplement (↑H) T) :
                                      Finite T H.FiniteIndex

                                      A right transversal is finite iff the subgroup has finite index.

                                      theorem AddSubgroup.IsComplement.finite_right_iff {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (h : IsComplement (↑H) T) :
                                      Finite T H.FiniteIndex

                                      A right transversal is finite iff the subgroup has finite index.

                                      @[deprecated Subgroup.IsComplement.finite_right_iff (since := "2024-12-28")]
                                      theorem Subgroup.MemRightTransversals.finite_iff {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (h : IsComplement (↑H) T) :
                                      Finite T H.FiniteIndex

                                      Alias of Subgroup.IsComplement.finite_right_iff.


                                      A right transversal is finite iff the subgroup has finite index.

                                      theorem Subgroup.IsComplement.finite_right {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} [H.FiniteIndex] (hT : IsComplement (↑H) T) :
                                      T.Finite
                                      theorem AddSubgroup.IsComplement.finite_right {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} [H.FiniteIndex] (hT : IsComplement (↑H) T) :
                                      T.Finite
                                      theorem Subgroup.IsComplement.mk''_rightQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (q : Quotient (QuotientGroup.rightRel H)) :
                                      Quotient.mk'' (hT.rightQuotientEquiv q) = q
                                      theorem AddSubgroup.IsComplement.mk''_rightQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) (q : Quotient (QuotientAddGroup.rightRel H)) :
                                      Quotient.mk'' (hT.rightQuotientEquiv q) = q
                                      @[deprecated Subgroup.IsComplement.mk''_rightQuotientEquiv (since := "2024-12-28")]
                                      theorem Subgroup.MemRightTransversals.mk''_toEquiv {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (q : Quotient (QuotientGroup.rightRel H)) :
                                      Quotient.mk'' (hT.rightQuotientEquiv q) = q

                                      Alias of Subgroup.IsComplement.mk''_rightQuotientEquiv.

                                      theorem Subgroup.IsComplement.rightQuotientEquiv_apply {G : Type u_1} [Group G] {H : Subgroup G} {f : Quotient (QuotientGroup.rightRel H)G} (hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q) (q : Quotient (QuotientGroup.rightRel H)) :
                                      (.rightQuotientEquiv q) = f q
                                      theorem AddSubgroup.IsComplement.rightQuotientEquiv_apply {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {f : Quotient (QuotientAddGroup.rightRel H)G} (hf : ∀ (q : Quotient (QuotientAddGroup.rightRel H)), Quotient.mk'' (f q) = q) (q : Quotient (QuotientAddGroup.rightRel H)) :
                                      (.rightQuotientEquiv q) = f q
                                      @[deprecated Subgroup.IsComplement.rightQuotientEquiv_apply (since := "2024-12-28")]
                                      theorem Subgroup.MemRightTransversals.toEquiv_apply {G : Type u_1} [Group G] {H : Subgroup G} {f : Quotient (QuotientGroup.rightRel H)G} (hf : ∀ (q : Quotient (QuotientGroup.rightRel H)), Quotient.mk'' (f q) = q) (q : Quotient (QuotientGroup.rightRel H)) :
                                      (.rightQuotientEquiv q) = f q

                                      Alias of Subgroup.IsComplement.rightQuotientEquiv_apply.

                                      noncomputable def Subgroup.IsComplement.toRightFun {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) :
                                      GT

                                      A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                                      Equations
                                      Instances For
                                        noncomputable def AddSubgroup.IsComplement.toRightFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) :
                                        GT

                                        A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                                        Equations
                                        Instances For
                                          @[deprecated Subgroup.IsComplement.toRightFun (since := "2024-12-28")]
                                          def Subgroup.MemRightTransversals.toFun {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) :
                                          GT

                                          Alias of Subgroup.IsComplement.toRightFun.


                                          A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset.

                                          Equations
                                          Instances For
                                            theorem Subgroup.IsComplement.mul_inv_toRightFun_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                                            g * (↑(hT.toRightFun g))⁻¹ H
                                            theorem AddSubgroup.IsComplement.add_neg_toRightFun_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                                            g + -(hT.toRightFun g) H
                                            @[deprecated Subgroup.IsComplement.mul_inv_toRightFun_mem (since := "2024-12-28")]
                                            theorem Subgroup.MemRighTransversals.mul_inv_toFun_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                                            g * (↑(hT.toRightFun g))⁻¹ H

                                            Alias of Subgroup.IsComplement.mul_inv_toRightFun_mem.

                                            theorem Subgroup.IsComplement.toRightFun_mul_inv_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                                            (hT.toRightFun g) * g⁻¹ H
                                            theorem AddSubgroup.IsComplement.toRightFun_add_neg_mem {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                                            (hT.toRightFun g) + -g H
                                            @[deprecated Subgroup.IsComplement.toRightFun_mul_inv_mem (since := "2024-12-28")]
                                            theorem Subgroup.MemRighTransversals.toFun_mul_inv_mem {G : Type u_1} [Group G] {H : Subgroup G} {T : Set G} (hT : IsComplement (↑H) T) (g : G) :
                                            (hT.toRightFun g) * g⁻¹ H

                                            Alias of Subgroup.IsComplement.toRightFun_mul_inv_mem.

                                            @[reducible, inline]
                                            abbrev Subgroup.LeftTransversal {G : Type u_1} [Group G] (H : Subgroup G) :
                                            Type u_1

                                            The collection of left transversals of a subgroup.

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev AddSubgroup.LeftTransversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                              Type u_1

                                              The collection of left transversals of a subgroup.

                                              Equations
                                              Instances For
                                                @[reducible, inline]
                                                abbrev Subgroup.RightTransversal {G : Type u_1} [Group G] (H : Subgroup G) :
                                                Type u_1

                                                The collection of right transversals of a subgroup.

                                                Equations
                                                Instances For
                                                  @[reducible, inline]
                                                  abbrev AddSubgroup.RightTransversal {G : Type u_1} [AddGroup G] (H : AddSubgroup G) :
                                                  Type u_1

                                                  The collection of right transversals of a subgroup.

                                                  Equations
                                                  Instances For
                                                    noncomputable instance Subgroup.instMulActionLeftTransversal {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] :
                                                    MulAction F H.LeftTransversal
                                                    Equations
                                                    noncomputable instance AddSubgroup.instAddActionLeftTransversal {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] :
                                                    AddAction F H.LeftTransversal
                                                    Equations
                                                    theorem Subgroup.smul_toLeftFun {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (g : G) :
                                                    f (.toLeftFun g) = (.toLeftFun (f g))
                                                    theorem AddSubgroup.vadd_toLeftFun {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (g : G) :
                                                    f +ᵥ (.toLeftFun g) = (.toLeftFun (f +ᵥ g))
                                                    theorem Subgroup.smul_leftQuotientEquiv {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                                    f (.leftQuotientEquiv q) = (.leftQuotientEquiv (f q))
                                                    theorem AddSubgroup.vadd_leftQuotientEquiv {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                                    f +ᵥ (.leftQuotientEquiv q) = (.leftQuotientEquiv (f +ᵥ q))
                                                    theorem Subgroup.smul_apply_eq_smul_apply_inv_smul {G : Type u_1} [Group G] {H : Subgroup G} {F : Type u_2} [Group F] [MulAction F G] [MulAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                                    (.leftQuotientEquiv q) = f (.leftQuotientEquiv (f⁻¹ q))
                                                    theorem AddSubgroup.vadd_apply_eq_vadd_apply_neg_vadd {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {F : Type u_2} [AddGroup F] [AddAction F G] [AddAction.QuotientAction F H] (f : F) (S : H.LeftTransversal) (q : G H) :
                                                    (.leftQuotientEquiv q) = f +ᵥ (.leftQuotientEquiv (-f +ᵥ q))
                                                    instance Subgroup.instInhabitedLeftTransversal {G : Type u_1} [Group G] {H : Subgroup G} :
                                                    Inhabited H.LeftTransversal
                                                    Equations
                                                    instance Subgroup.instInhabitedRightTransversal {G : Type u_1} [Group G] {H : Subgroup G} :
                                                    Inhabited H.RightTransversal
                                                    Equations
                                                    theorem Subgroup.IsComplement'.isCompl {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                                    theorem Subgroup.IsComplement'.sup_eq_top {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                                    H K =
                                                    theorem Subgroup.IsComplement'.disjoint {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                                    theorem Subgroup.IsComplement'.index_eq_card {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                                    K.index = Nat.card H
                                                    noncomputable def Subgroup.IsComplement'.QuotientMulEquiv {G : Type u_1} [Group G] {H K : Subgroup G} [K.Normal] (h : H.IsComplement' K) :
                                                    G K ≃* H

                                                    If H and K are complementary with K normal, then G ⧸ K is isomorphic to H.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem Subgroup.IsComplement'.QuotientMulEquiv_apply {G : Type u_1} [Group G] {H K : Subgroup G} [K.Normal] (h : H.IsComplement' K) (a✝ : G K) :
                                                      h.QuotientMulEquiv a✝ = (IsComplement.leftQuotientEquiv h) a✝
                                                      @[simp]
                                                      theorem Subgroup.IsComplement'.QuotientMulEquiv_symm_apply {G : Type u_1} [Group G] {H K : Subgroup G} [K.Normal] (h : H.IsComplement' K) (a✝ : H) :
                                                      h.QuotientMulEquiv.symm a✝ = (IsComplement.leftQuotientEquiv h).symm a✝
                                                      theorem Subgroup.IsComplement.card_mul {G : Type u_1} [Group G] {S T : Set G} (h : IsComplement S T) :
                                                      theorem Subgroup.IsComplement'.card_mul {G : Type u_1} [Group G] {H K : Subgroup G} (h : H.IsComplement' K) :
                                                      theorem Subgroup.isComplement'_of_disjoint_and_mul_eq_univ {G : Type u_1} [Group G] {H K : Subgroup G} (h1 : Disjoint H K) (h2 : H * K = Set.univ) :
                                                      H.IsComplement' K
                                                      theorem Subgroup.isComplement'_of_card_mul_and_disjoint {G : Type u_1} [Group G] {H K : Subgroup G} [Finite G] (h1 : Nat.card H * Nat.card K = Nat.card G) (h2 : Disjoint H K) :
                                                      H.IsComplement' K
                                                      theorem Subgroup.isComplement'_iff_card_mul_and_disjoint {G : Type u_1} [Group G] {H K : Subgroup G} [Finite G] :
                                                      H.IsComplement' K Nat.card H * Nat.card K = Nat.card G Disjoint H K
                                                      theorem Subgroup.isComplement'_of_coprime {G : Type u_1} [Group G] {H K : Subgroup G} [Finite G] (h1 : Nat.card H * Nat.card K = Nat.card G) (h2 : (Nat.card H).Coprime (Nat.card K)) :
                                                      H.IsComplement' K
                                                      theorem Subgroup.isComplement'_stabilizer {G : Type u_1} [Group G] {H : Subgroup G} {α : Type u_2} [MulAction G α] (a : α) (h1 : ∀ (h : H), h a = ah = 1) (h2 : ∀ (g : G), ∃ (h : H), h g a = a) :
                                                      H.IsComplement' (MulAction.stabilizer G a)