Iwasawa criterion for simplicity #
IwasawaStructure: the structure underlying the Iwasawa criterion For a groupG, this consists of an action ofGon a typeαand, for everya : α, of a subgroupT a, such that the following properties hold:
We then prove two versions of the Iwasawa criterion when there is an Iwasawa structure.
IwasawaStructure.commutator_leasserts that if the action ofGonαis quasiprimitive, then every normal subgroup that acts nontrivially containscommutator GIwasawaStructure.isSimpleGroup: the Iwasawa criterion for simplicity If the action ofGonαis quasiprimitive and faithful, andGis nontrivial and perfect, thenGis simple.
TODO #
Additivize. The issue is that it requires to additivize commutator
(which, moreover, lives in the root namespace)
The structure underlying the Iwasawa criterion
- T : α → Subgroup M
The subgroups of the Iwasawa structure
- is_comm (x : α) : IsMulCommutative ↥(self.T x)
The commutativity property of the subgroups
The conjugacy property of the subgroups
The subgroups generate the group
Instances For
The Iwasawa criterion : If a quasiprimitive action of a group G on X has an Iwasawa structure, then any normal subgroup that acts nontrivially contains the group of commutators.
The Iwasawa criterion for simplicity