Iwasawa criterion for simplicity #
IwasawaStructure
: the structure underlying the Iwasawa criterion For a groupG
, this consists of an action ofG
on a typeα
and, for everya : α
, of a subgroupT a
, such that the following properties hold:
We then prove two versions of the Iwasawa criterion when there is an Iwasawa structure.
IwasawaStructure.commutator_le
asserts that if the action ofG
onα
is quasiprimitive, then every normal subgroup that acts nontrivially containscommutator G
IwasawaStructure.isSimpleGroup
: the Iwasawa criterion for simplicity If the action ofG
onα
is quasiprimitive and faithful, andG
is nontrivial and perfect, thenG
is simple.
TODO #
Additivize. The issue is that it requires to additivize commutator
(which, moreover, lives in the root namespace)
The structure underlying the Iwasawa criterion
- T : α → Subgroup M
The subgroups of the Iwasawa structure
- is_comm (x : α) : (self.T x).IsCommutative
The commutativity property of the subgroups
The conjugacy property of the subgroups
The subgroups generate the group
Instances For
The Iwasawa criterion : If a quasiprimitive action of a group G on X has an Iwasawa structure, then any normal subgroup that acts nontrivially contains the group of commutators.
The Iwasawa criterion for simplicity