Documentation

Mathlib.GroupTheory.GroupAction.Iwasawa

Iwasawa criterion for simplicity #

We then prove two versions of the Iwasawa criterion when there is an Iwasawa structure.

TODO #

Additivize. The issue is that it requires to additivize commutator (which, moreover, lives in the root namespace)

structure MulAction.IwasawaStructure (M : Type u_1) [Group M] (α : Type u_2) [MulAction M α] :
Type (max u_1 u_2)

The structure underlying the Iwasawa criterion

  • T : αSubgroup M

    The subgroups of the Iwasawa structure

  • is_comm (x : α) : (self.T x).IsCommutative

    The commutativity property of the subgroups

  • is_conj (g : M) (x : α) : self.T (g x) = MulAut.conj g self.T x

    The conjugacy property of the subgroups

  • is_generator : iSup self.T =

    The subgroups generate the group

Instances For
    theorem MulAction.IwasawaStructure.commutator_le {M : Type u_1} [Group M] {α : Type u_2} [MulAction M α] (IwaS : IwasawaStructure M α) [IsQuasiPreprimitive M α] (N : Subgroup M) [nN : N.Normal] (hNX : fixedPoints (↥N) α Set.univ) :

    The Iwasawa criterion : If a quasiprimitive action of a group G on X has an Iwasawa structure, then any normal subgroup that acts nontrivially contains the group of commutators.

    theorem MulAction.IwasawaStructure.isSimpleGroup {M : Type u_1} [Group M] {α : Type u_2} [MulAction M α] [Nontrivial M] (is_perfect : commutator M = ) [IsQuasiPreprimitive M α] (IwaS : IwasawaStructure M α) (is_faithful : FaithfulSMul M α) :

    The Iwasawa criterion for simplicity