Documentation

Mathlib.LinearAlgebra.Dimension.ErdosKaplansky

Erdős-Kaplansky theorem #

For modules over a division ring, we have

Key lemma towards the Erdős-Kaplansky theorem from https://mathoverflow.net/a/168624

theorem rank_fun_infinite {K : Type u} [DivisionRing K] {ι : Type v} [hι : Infinite ι] :
Module.rank K (ιK) = Cardinal.mk (ιK)

The Erdős-Kaplansky Theorem: the dual of an infinite-dimensional vector space over a division ring has dimension equal to its cardinality.

The Erdős-Kaplansky Theorem over a field.