Circulant matrices #
This file contains the definition and basic results about circulant matrices.
Given a vector v : n → α
indexed by a type that is endowed with subtraction,
Matrix.circulant v
is the matrix whose (i, j)
th entry is v (i - j)
.
Main results #
Matrix.circulant
: the circulant matrix generated by a given vectorv : n → α
.Matrix.circulant_mul
: the product of two circulant matricescirculant v
andcirculant w
is the circulant matrix generated bycirculant v *ᵥ w
.Matrix.circulant_mul_comm
: multiplication of circulant matrices commutes when the elements do.
Implementation notes #
Matrix.Fin.foo
is the Fin n
version of Matrix.foo
.
Namely, the index type of the circulant matrices in discussion is Fin n
.
Tags #
circulant, matrix
Given the condition [Sub n]
and a vector v : n → α
,
we define circulant v
to be the circulant matrix generated by v
of type Matrix n n α
.
The (i,j)
th entry is defined to be v (i - j)
.
Equations
- Matrix.circulant v = Matrix.of fun (i j : n) => v (i - j)
Instances For
theorem
Matrix.Fin.circulant_injective
{α : Type u_1}
(n : ℕ)
:
Function.Injective fun (v : Fin n → α) => circulant v
theorem
Matrix.circulant_mul_comm
{α : Type u_1}
{n : Type u_3}
[CommSemigroup α]
[AddCommMonoid α]
[Fintype n]
[AddCommGroup n]
(v w : n → α)
:
Multiplication of circulant matrices commutes when the elements do.
theorem
Matrix.Fin.circulant_mul_comm
{α : Type u_1}
[CommSemigroup α]
[AddCommMonoid α]
{n : ℕ}
(v w : Fin n → α)
: