Documentation

Mathlib.LinearAlgebra.Matrix.Module

Mₙ(R)-module structure on Mⁿ #

Main Results #

Tags #

matrix, module

def Matrix.Module.matrixModule {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] :
Module (Matrix ι ι R) (ιM)

Mⁿ is a Mₙ(R) module, note that this creates a diamond when M is Matrix ι ι R or when M is R.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem Matrix.Module.smul_def {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] (N : Matrix ι ι R) (v : ιM) :
    N v = fun (i : ι) => j : ι, N i j v j
    theorem Matrix.Module.smul_def' {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] (N : Matrix ι ι R) (v : ιM) :
    N v = j : ι, fun (i : ι) => N i j v j
    @[simp]
    theorem Matrix.Module.smul_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] (N : Matrix ι ι R) (v : ιM) (i : ι) :
    (N v) i = j : ι, N i j v j
    theorem Matrix.Module.instIsScalarTowerForall {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] (S : Type u_6) [Ring S] [SMul R S] [Module S M] [IsScalarTower R S M] :
    IsScalarTower R (Matrix ι ι S) (ιM)
    def LinearMap.mapMatrixModule (ι : Type u_1) {R : Type u_2} {M : Type u_3} {N : Type u_4} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) :
    (ιM) →ₗ[Matrix ι ι R] ιN

    The induced linear map from Mⁿ to Nⁿ by a linear map f : M → N, this is the matrix linear version of LinearMap.compLeft.

    Equations
    Instances For
      @[simp]
      theorem LinearMap.mapMatrixModule_apply (ι : Type u_1) {R : Type u_2} {M : Type u_3} {N : Type u_4} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (f : M →ₗ[R] N) (a : ιM) (a✝ : ι) :
      (mapMatrixModule ι f) a a✝ = (f.compLeft ι) a a✝
      @[simp]
      theorem LinearMap.mapMatrixModule_id {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] :
      theorem LinearMap.mapMatrixModule_id_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] (v : ιM) :
      theorem LinearMap.mapMatrixModule_comp {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} {P : Type u_5} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) :
      @[simp]
      theorem LinearMap.mapMatrixModule_comp_apply {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} {P : Type u_5} [Ring R] [Fintype ι] [DecidableEq ι] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] [AddCommGroup P] [Module R P] (f : M →ₗ[R] N) (g : N →ₗ[R] P) (v : ιM) :
      (mapMatrixModule ι (g ∘ₗ f)) v = (mapMatrixModule ι g) ((mapMatrixModule ι f) v)