Results on finitely supported functions. #
ofFinsuppEquiv, the tensor product of the familyκ i →₀ M iindexed byιis linearly equivalent to∏ i, κ i →₀ ⨂[R] i, M i.
noncomputable def
PiTensorProduct.ofFinsuppEquiv
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : ι → Type u_4}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → DecidableEq (M i)]
:
(PiTensorProduct R fun (i : ι) => κ i →₀ M i) ≃ₗ[R] ((i : ι) → κ i) →₀ PiTensorProduct R fun (i : ι) => M i
If ι is a Fintype, κ i is a family of types indexed by ι and M i is a family
of modules indexed by ι, then the tensor product of the family κ i →₀ M i is linearly
equivalent to ∏ i, κ i →₀ ⨂[R] i, M i.
Equations
Instances For
@[simp]
theorem
PiTensorProduct.ofFinsuppEquiv_tprod_single
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : ι → Type u_4}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → DecidableEq (M i)]
(p : (i : ι) → κ i)
(m : (i : ι) → M i)
:
ofFinsuppEquiv ((tprod R) fun (i : ι) => Finsupp.single (p i) (m i)) = Finsupp.single p (⨂ₜ[R] (i : ι), m i)
@[simp]
theorem
PiTensorProduct.ofFinsuppEquiv_apply
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : ι → Type u_4}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → DecidableEq (M i)]
(f : (i : ι) → κ i →₀ M i)
(p : (i : ι) → κ i)
:
@[simp]
theorem
PiTensorProduct.ofFinsuppEquiv_symm_single_tprod
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
{M : ι → Type u_4}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[(i : ι) → AddCommMonoid (M i)]
[(i : ι) → Module R (M i)]
[(i : ι) → DecidableEq (M i)]
(p : (i : ι) → κ i)
(m : (i : ι) → M i)
:
ofFinsuppEquiv.symm (Finsupp.single p (⨂ₜ[R] (i : ι), m i)) = (tprod R) fun (i : ι) => Finsupp.single (p i) (m i)
noncomputable def
PiTensorProduct.ofFinsuppEquiv'
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[DecidableEq R]
:
A variant of ofFinsuppEquiv where all modules M i are the ground ring.
Equations
Instances For
@[simp]
theorem
PiTensorProduct.ofFinsuppEquiv'_apply_apply
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[DecidableEq R]
(f : (i : ι) → κ i →₀ R)
(p : (i : ι) → κ i)
:
@[simp]
theorem
PiTensorProduct.ofFinsuppEquiv'_tprod_single
{R : Type u_1}
{ι : Type u_2}
{κ : ι → Type u_3}
[CommSemiring R]
[Fintype ι]
[DecidableEq ι]
[(i : ι) → DecidableEq (κ i)]
[DecidableEq R]
(p : (i : ι) → κ i)
(r : ι → R)
:
ofFinsuppEquiv' ((tprod R) fun (i : ι) => Finsupp.single (p i) (r i)) = Finsupp.single p (∏ i : ι, r i)