Relations in Geck's construction of a Lie algebra associated to a root system #
This file contains proofs that RootPairing.GeckConstruction.lieAlgebra
contains sl₂
triples
satisfying relations associated to the Cartan matrix of the input root system.
Main definitions: #
RootPairing.GeckConstruction.isSl2Triple
: a distinguished family ofsl₂
triples contained in the Geck construction.RootPairing.GeckConstruction.lie_h_e
: an interaction relation between differentsl₂
triples.RootPairing.GeckConstruction.lie_h_f
: an interaction relation between differentsl₂
triples.RootPairing.GeckConstruction.lie_e_f_ne
: an interaction relation between differentsl₂
triples.
theorem
RootPairing.GeckConstruction.lie_h_e
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Finite ι]
[CommRing R]
[IsDomain R]
[CharZero R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootSystem ι R M N}
[P.IsCrystallographic]
{b : P.Base}
[Fintype ι]
(i j : { x : ι // x ∈ b.support })
:
Lemma 3.3 (a) from Geck.
theorem
RootPairing.GeckConstruction.lie_h_f
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Finite ι]
[CommRing R]
[IsDomain R]
[CharZero R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootSystem ι R M N}
[P.IsCrystallographic]
{b : P.Base}
[Fintype ι]
(i j : { x : ι // x ∈ b.support })
:
Lemma 3.3 (b) from Geck.
theorem
RootPairing.GeckConstruction.lie_e_f_same
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Finite ι]
[CommRing R]
[IsDomain R]
[CharZero R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootSystem ι R M N}
[P.IsCrystallographic]
{b : P.Base}
[Fintype ι]
(i : { x : ι // x ∈ b.support })
[P.IsReduced]
:
Lemma 3.4 from Geck.
theorem
RootPairing.GeckConstruction.isSl2Triple
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Finite ι]
[CommRing R]
[IsDomain R]
[CharZero R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootSystem ι R M N}
[P.IsCrystallographic]
{b : P.Base}
[Fintype ι]
(i : { x : ι // x ∈ b.support })
[P.IsReduced]
[DecidableEq ι]
:
IsSl2Triple (h i) (e i) (f i)
theorem
RootPairing.GeckConstruction.lie_e_f_ne
{ι : Type u_1}
{R : Type u_2}
{M : Type u_3}
{N : Type u_4}
[Finite ι]
[CommRing R]
[IsDomain R]
[CharZero R]
[AddCommGroup M]
[Module R M]
[AddCommGroup N]
[Module R N]
{P : RootSystem ι R M N}
[P.IsCrystallographic]
{b : P.Base}
[Fintype ι]
{i j : { x : ι // x ∈ b.support }}
(hij : i ≠ j)
[P.IsReduced]
[P.IsIrreducible]
:
Lemma 3.5 from Geck.