Documentation

Mathlib.LinearAlgebra.RootSystem.Irreducible

Irreducible root pairings #

This file contains basic definitions and results about irreducible root systems.

Main definitions / results: #

theorem RootPairing.isSimpleModule_weylGroupRootRep_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Nontrivial M] :
class RootPairing.IsIrreducible {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :

A root pairing is irreducible if it is non-trivial and contains no proper invariant submodules.

Instances
    theorem RootPairing.isIrreducible_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
    P.IsIrreducible Nontrivial M Nontrivial N (∀ (q : Submodule R M), (∀ (i : ι), q Module.End.invtSubmodule (P.reflection i))q q = ) ∀ (q : Submodule R N), (∀ (i : ι), q Module.End.invtSubmodule (P.coreflection i))q q =
    instance RootPairing.instIsIrreducibleFlip {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [P.IsIrreducible] :
    def RootPairing.toRootSystem {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [Nonempty ι] [NeZero 2] [P.IsIrreducible] :
    RootSystem ι R M N

    A nonempty irreducible root pairing is a root system.

    Equations
    • P.toRootSystem = { toRootPairing := P, span_root_eq_top := , span_coroot_eq_top := }
    Instances For
      theorem RootPairing.IsIrreducible.mk' {ι : Type u_1} {M : Type u_3} {N : Type u_4} [AddCommGroup M] [AddCommGroup N] {K : Type u_5} [Field K] [Module K M] [Module K N] [Nontrivial M] (P : RootPairing ι K M N) (h : ∀ (q : Submodule K M), (∀ (i : ι), q Module.End.invtSubmodule (P.reflection i))q q = ) :

      When the coefficients are a field, the coroot conditions for irreducibility follow from those for the roots.

      theorem RootPairing.span_orbit_eq_top {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [NeZero 2] [P.IsIrreducible] (i : ι) :
      theorem RootPairing.exists_form_eq_form_and_form_ne_zero {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [NeZero 2] [P.IsIrreducible] (B : P.InvariantForm) (i j : ι) :
      ∃ (k : ι), (B.form (P.root k)) (P.root k) = (B.form (P.root j)) (P.root j) (B.form (P.root i)) (P.root k) 0