Documentation

Mathlib.LinearAlgebra.RootSystem.WeylGroup

The Weyl group of a root pairing #

This file defines the Weyl group of a root pairing as the subgroup of automorphisms generated by reflection automorphisms. This deviates from the existing literature, which typically defines the Weyl group as the subgroup of linear transformations of the weight space generated by linear reflections. However, the automorphism group of a root pairing comes with a permutation representation on the set indexing roots and faithful linear representations on the weight space and coweight space. Thus, our formalism gives us an isomorphism to the traditional Weyl group together with the natural dual representation generated by coreflections and the permutation representation on roots.

Main definitions #

Results #

TODO #

def RootPairing.weylGroup {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
Subgroup P.Aut

The Weyl group of a root pairing is the group of automorphisms of the root pairing generated by reflections.

Equations
Instances For
    theorem RootPairing.reflection_mem_weylGroup {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (i : ι) :
    Equiv.reflection P i P.weylGroup
    theorem RootPairing.range_weylGroup_weightHom {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
    ((Equiv.weightHom P).restrict P.weylGroup).range = Subgroup.closure (Set.range P.reflection)
    theorem RootPairing.range_weylGroup_coweightHom {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
    ((Equiv.coweightHom P).restrict P.weylGroup).range = Subgroup.closure (Set.range (MulOpposite.op P.coreflection))
    @[reducible, inline]
    abbrev RootPairing.weylGroupToPerm {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
    P.weylGroup →* ι ι

    The permutation representation of the Weyl group induced by reflection_perm.

    Equations
    Instances For
      theorem RootPairing.range_weylGroupToPerm {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) :
      P.weylGroupToPerm.range = Subgroup.closure (Set.range P.reflection_perm)