Documentation

Mathlib.LinearAlgebra.RootSystem.RootPositive

Root-positive bilinear forms on root pairings #

This file contains basic results on Weyl-invariant inner products for root systems and root data. Given a root pairing we define a structure which contains a bilinear form together with axioms for reflection-invariance, symmetry, and strict positivity on all roots. We show that root-positive forms display the same sign behavior as the canonical pairing between roots and coroots.

Root-positive forms show up naturally as the invariant forms for symmetrizable Kac-Moody Lie algebras. In the finite case, the canonical polarization yields a root-positive form that is positive semi-definite on weight space and positive-definite on the span of roots.

Main definitions / results: #

TODO #

theorem RootPairing.two_mul_apply_root_root_of_isOrthogonal {ι : Type u_1} {R : Type u_2} {M : Type u_4} {N : Type u_5} [CommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (B : LinearMap.BilinForm R M) (i j : ι) (h : LinearMap.IsOrthogonal B (P.reflection j)) :
2 * (B (P.root i)) (P.root j) = P.pairing i j * (B (P.root j)) (P.root j)
structure RootPairing.RootPositiveForm {ι : Type u_1} {R : Type u_2} (S : Type u_3) {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) [P.IsValuedIn S] :
Type (max u_2 u_4)

Given a root pairing, this is an invariant symmetric bilinear form satisfying a positivity condition.

Instances For
    theorem RootPairing.RootPositiveForm.two_mul_apply_root_root {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) :
    2 * (B.form (P.root i)) (P.root j) = P.pairing i j * (B.form (P.root j)) (P.root j)
    theorem RootPairing.RootPositiveForm.form_apply_root_ne_zero {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] (i : ι) :
    (B.form (P.root i)) (P.root i) 0
    def RootPairing.RootPositiveForm.posForm {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] :

    Given a root-positive form associated to a root pairing with coefficients in R but taking values in S, this is the associated S-bilinear form on the S-span of the roots.

    Equations
    Instances For
      @[simp]
      theorem RootPairing.RootPositiveForm.algebraMap_posForm {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] {x y : (Submodule.span S (Set.range P.root))} :
      (algebraMap S R) ((B.posForm x) y) = (B.form x) y
      theorem RootPairing.RootPositiveForm.algebraMap_apply_eq_form_iff {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] {x y : (Submodule.span S (Set.range P.root))} {s : S} :
      (algebraMap S R) s = (B.form x) y s = (B.posForm x) y
      theorem RootPairing.RootPositiveForm.zero_lt_posForm_iff {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] {x y : (Submodule.span S (Set.range P.root))} :
      0 < (B.posForm x) y s > 0, (algebraMap S R) s = (B.form x) y
      theorem RootPairing.RootPositiveForm.zero_lt_posForm_apply_root {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] (i : ι) (hi : P.root i Submodule.span S (Set.range P.root) := ) :
      0 < (B.posForm P.root i, hi) P.root i, hi
      theorem RootPairing.RootPositiveForm.isSymm_posForm {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] :
      @[simp]
      theorem RootPairing.RootPositiveForm.zero_lt_apply_root_root_iff {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] (hi : P.root i Submodule.span S (Set.range P.root) := ) (hj : P.root j Submodule.span S (Set.range P.root) := ) :
      0 < (B.posForm P.root i, hi) P.root j, hj 0 < P.pairingIn S i j
      theorem RootPairing.zero_lt_pairingIn_iff {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] :
      0 < P.pairingIn S i j 0 < P.pairingIn S j i
      theorem RootPairing.coxeterWeight_nonneg {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) [FaithfulSMul S R] [Module S M] [IsScalarTower S R M] :
      @[simp]
      theorem RootPairing.apply_root_root_zero_iff {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) [FaithfulSMul S R] [NoZeroDivisors R] :
      (B.form (P.root i)) (P.root j) = 0 P.pairing i j = 0
      theorem RootPairing.pairing_zero_iff {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) [FaithfulSMul S R] [NoZeroDivisors R] :
      P.pairing i j = 0 P.pairing j i = 0
      theorem RootPairing.coxeterWeight_zero_iff_isOrthogonal {ι : Type u_1} {R : Type u_2} {S : Type u_3} {M : Type u_4} {N : Type u_5} [LinearOrderedCommRing S] [CommRing R] [Algebra S R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} [P.IsValuedIn S] (B : RootPositiveForm S P) (i j : ι) [FaithfulSMul S R] [NoZeroDivisors R] :