Documentation

Mathlib.LinearAlgebra.RootSystem.RootPositive

Root-positive bilinear forms on root pairings #

This file contains basic results on Weyl-invariant inner products for root systems and root data. We introduce a Prop-valued mixin class for a root pairing and bilinear form, specifying reflection-invariance, symmetry, and strict positivity on all roots. We show that root-positive forms display the same sign behavior as the canonical pairing between roots and coroots.

Root-positive forms show up naturally as the invariant forms for symmetrizable Kac-Moody Lie algebras. In the finite case, the canonical polarization yields a root-positive form that is positive semi-definite on weight space and positive-definite on the span of roots.

Main definitions: #

Main results: #

TODO #

class RootPairing.IsRootPositive {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] (P : RootPairing ι R M N) (B : M →ₗ[R] M →ₗ[R] R) :

A Prop-valued class for a bilinear form to be compatible with a root pairing.

  • zero_lt_apply_root : ∀ (i : ι), 0 < (B (P.root i)) (P.root i)
  • symm : ∀ (x y : M), (B x) y = (B y) x
  • apply_reflection_eq : ∀ (i : ι) (x y : M), (B ((P.reflection i) x)) ((P.reflection i) y) = (B x) y
Instances
    theorem RootPairing.two_mul_apply_root_root {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    2 * (B (P.root i)) (P.root j) = P.pairing i j * (B (P.root j)) (P.root j)
    @[simp]
    theorem RootPairing.zero_lt_apply_root_root_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    0 < (B (P.root i)) (P.root j) 0 < P.pairing i j
    theorem RootPairing.zero_lt_pairing_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    0 < P.pairing i j 0 < P.pairing j i
    theorem RootPairing.coxeterWeight_non_neg {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    0 P.coxeterWeight i j
    @[simp]
    theorem RootPairing.apply_root_root_zero_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    (B (P.root i)) (P.root j) = 0 P.pairing i j = 0
    theorem RootPairing.pairing_zero_iff {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    P.pairing i j = 0 P.pairing j i = 0
    theorem RootPairing.coxeterWeight_zero_iff_isOrthogonal {ι : Type u_1} {R : Type u_2} {M : Type u_3} {N : Type u_4} [LinearOrderedCommRing R] [AddCommGroup M] [Module R M] [AddCommGroup N] [Module R N] {P : RootPairing ι R M N} (B : M →ₗ[R] M →ₗ[R] R) [P.IsRootPositive B] (i j : ι) :
    P.coxeterWeight i j = 0 P.IsOrthogonal i j