Documentation

Mathlib.LinearAlgebra.SymmetricAlgebra.Basis

A basis for SymmetricAlgebra R M #

Main definitions #

Main results #

Implementation notes #

This file closely mirrors the corresponding file for TensorAlgebra.

noncomputable def SymmetricAlgebra.equivMvPolynomial {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

SymmetricAlgebra.equivMvPolynomial gives an algebra isomorphism between the symmetric algebra over a free module and multivariate polynomials over a basis. This is analogous to TensorAlgebra.equivFreeAlgebra.

Equations
Instances For
    @[simp]
    theorem SymmetricAlgebra.equivMvPolynomial_ι_apply {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (i : κ) :
    (equivMvPolynomial b) ((ι R M) (b i)) = MvPolynomial.X i
    @[simp]
    theorem SymmetricAlgebra.equivMvPolynomial_symm_X {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) (i : κ) :
    noncomputable def Basis.symmetricAlgebra {κ : Type uκ} {R : Type uR} {M : Type uM} [CommSemiring R] [AddCommMonoid M] [Module R M] (b : Basis κ R M) :

    A basis on M can be lifted to a basis on SymmetricAlgebra R M.

    Equations
    Instances For

      SymmetricAlgebra R M is free when M is.

      The SymmetricAlgebra of a free module over a commutative semiring with no zero-divisors has no zero-divisors.

      The TensorAlgebra of a free module over an integral domain is a domain.