Documentation

Mathlib.LinearAlgebra.Transvection

Transvections in a module #

def LinearMap.transvection {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] (f : Module.Dual R V) (v : V) :

The transvection associated with a linear form f and a vector v.

NB. It is only a transvection when f v = 0. See also Module.preReflection.

Equations
Instances For
    theorem LinearMap.transvection.apply {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] (f : Module.Dual R V) (v x : V) :
    (transvection f v) x = x + f x v
    theorem LinearMap.transvection.comp_of_left_eq_apply {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] {f : Module.Dual R V} {v w x : V} (hw : f w = 0) :
    (transvection f v) ((transvection f w) x) = (transvection f (v + w)) x
    theorem LinearMap.transvection.comp_of_left_eq {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] {f : Module.Dual R V} {v w : V} (hw : f w = 0) :
    theorem LinearMap.transvection.comp_of_right_eq_apply {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] {f g : Module.Dual R V} {v x : V} (hf : f v = 0) :
    (transvection f v) ((transvection g v) x) = (transvection (f + g) v) x
    theorem LinearMap.transvection.comp_of_right_eq {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] {f g : Module.Dual R V} {v : V} (hf : f v = 0) :
    @[simp]
    theorem LinearMap.transvection.of_left_eq_zero {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] (v : V) :
    @[simp]
    theorem LinearMap.transvection.congr {R : Type u_1} {V : Type u_2} [CommSemiring R] [AddCommMonoid V] [Module R V] {W : Type u_3} [AddCommMonoid W] [Module R W] (f : Module.Dual R V) (v : V) (e : V ≃ₗ[R] W) :
    e ∘ₗ transvection f v ∘ₗ e.symm = (f ∘ₗ e.symm).transvection (e v)
    def LinearEquiv.transvection {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v : V} (h : f v = 0) :

    The transvection associated with a linear form f and a vector v such that f v = 0.

    Equations
    Instances For
      theorem LinearEquiv.transvection.apply {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v : V} (h : f v = 0) (x : V) :
      (transvection h) x = x + f x v
      @[simp]
      theorem LinearEquiv.transvection.coe_toLinearMap {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v : V} (h : f v = 0) :
      @[simp]
      theorem LinearEquiv.transvection.coe_apply {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v x : V} {h : f v = 0} :
      theorem LinearEquiv.transvection.trans_of_left_eq {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v w : V} (hv : f v = 0) (hw : f w = 0) (hvw : f (v + w) = 0 := by simp [hv, hw]) :
      theorem LinearEquiv.transvection.trans_of_right_eq {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f g : Module.Dual R V} {v : V} (hf : f v = 0) (hg : g v = 0) (hfg : (f + g) v = 0 := by simp [hf, hg]) :
      @[simp]
      theorem LinearEquiv.transvection.of_left_eq_zero {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (v : V) (hv : 0 v = 0 := ) :
      @[simp]
      theorem LinearEquiv.transvection.of_right_eq_zero {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] (f : Module.Dual R V) (hf : f 0 = 0 := ) :
      theorem LinearEquiv.transvection.symm_eq {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v : V} (hv : f v = 0) (hv' : f (-v) = 0 := by simp [hv]) :
      theorem LinearEquiv.transvection.symm_eq' {R : Type u_1} {V : Type u_2} [CommRing R] [AddCommGroup V] [Module R V] {f : Module.Dual R V} {v : V} (hf : f v = 0) (hf' : (-f) v = 0 := by simp [hf]) :