Documentation

Mathlib.Logic.IsEmpty.Basic

In this file we prove some basic properties about the typeclass IsEmpty.

@[simp]
theorem not_nonempty_iff {α : Sort u_1} :
@[simp]
theorem not_isEmpty_iff {α : Sort u_1} :
@[simp]
theorem isEmpty_Prop {p : Prop} :
@[simp]
theorem isEmpty_pi {α : Sort u_1} {π : αSort u_4} :
IsEmpty ((a : α) → π a) (a : α), IsEmpty (π a)
theorem isEmpty_fun {α : Sort u_1} {β : Sort u_2} :
IsEmpty (αβ) Nonempty α IsEmpty β
@[simp]
theorem nonempty_fun {α : Sort u_1} {β : Sort u_2} :
Nonempty (αβ) IsEmpty α Nonempty β
@[simp]
theorem isEmpty_sigma {α : Type u_5} {E : αType u_4} :
IsEmpty (Sigma E) ∀ (a : α), IsEmpty (E a)
@[simp]
theorem isEmpty_psigma {α : Sort u_5} {E : αSort u_4} :
IsEmpty (PSigma E) ∀ (a : α), IsEmpty (E a)
theorem isEmpty_subtype {α : Sort u_1} (p : αProp) :
IsEmpty (Subtype p) ∀ (x : α), ¬p x
@[simp]
theorem isEmpty_prod {α : Type u_4} {β : Type u_5} :
@[simp]
theorem isEmpty_pprod {α : Sort u_1} {β : Sort u_2} :
@[simp]
theorem isEmpty_sum {α : Type u_4} {β : Type u_5} :
@[simp]
theorem isEmpty_psum {α : Sort u_4} {β : Sort u_5} :
@[simp]
@[simp]
theorem isEmpty_plift {α : Sort u_4} :
theorem wellFounded_of_isEmpty {α : Sort u_4} [IsEmpty α] (r : ααProp) :
@[simp]
theorem not_isEmpty_of_nonempty (α : Sort u_1) [h : Nonempty α] :
theorem Function.extend_of_isEmpty {α : Sort u_1} {β : Sort u_2} {γ : Sort u_3} [IsEmpty α] (f : αβ) (g : αγ) (h : βγ) :
extend f g h = h
@[simp]
theorem leftTotal_empty {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty α] :
theorem leftTotal_iff_isEmpty_left {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty β] :
@[simp]
theorem rightTotal_empty {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty β] :
theorem rightTotal_iff_isEmpty_right {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty α] :
@[simp]
theorem biTotal_empty {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty α] [IsEmpty β] :
theorem biTotal_iff_isEmpty_right {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty α] :
theorem biTotal_iff_isEmpty_left {α : Type u_4} {β : Type u_5} (R : αβProp) [IsEmpty β] :
theorem Function.Surjective.of_isEmpty {α : Type u_4} {β : Type u_5} [IsEmpty β] (f : αβ) :
theorem Function.surjective_iff_isEmpty {α : Type u_4} {β : Type u_5} [IsEmpty α] (f : αβ) :
theorem Function.Bijective.of_isEmpty {α : Type u_4} {β : Type u_5} (f : αβ) [IsEmpty β] :
theorem Function.not_surjective_of_isEmpty_of_nonempty {α : Type u_4} {β : Type u_5} [IsEmpty α] [Nonempty β] (f : αβ) :