Documentation

Mathlib.MeasureTheory.Decomposition.Exhaustion

Method of exhaustion #

If μ, ν are two measures with ν s-finite, then there exists a set s such that μ is sigma-finite on s, and for all sets t ⊆ sᶜ, either ν t = 0 or μ t = ∞.

Main definitions #

Main statements #

References #

def MeasureTheory.Measure.sigmaFiniteSetWRT {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) :
Set α

A measurable set such that μ.restrict (μ.sigmaFiniteSetWRT ν) is sigma-finite and for all measurable sets t ⊆ sᶜ, either ν t = 0 or μ t = ∞.

Equations
Instances For
    theorem MeasureTheory.measurableSet_sigmaFiniteSetWRT {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} :
    MeasurableSet (μ.sigmaFiniteSetWRT ν)
    instance MeasureTheory.instSigmaFiniteRestrictSigmaFiniteSetWRT {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} :
    SigmaFinite (μ.restrict (μ.sigmaFiniteSetWRT ν))

    We prove that the condition in the definition of sigmaFiniteSetWRT is true for finite measures. Since every s-finite measure is absolutely continuous with respect to a finite measure, the condition will then also be true for s-finite measures.

    theorem MeasureTheory.exists_isSigmaFiniteSet_measure_ge {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] (n : ) :
    ∃ (t : Set α), MeasurableSet t SigmaFinite (μ.restrict t) (⨆ (s : Set α), ⨆ (_ : MeasurableSet s), ⨆ (_ : SigmaFinite (μ.restrict s)), ν s) - 1 / n ν t

    Let C be the supremum of ν s over all measurable sets s such that μ.restrict s is sigma-finite. C is finite since ν is a finite measure. Then there exists a measurable set t with μ.restrict t sigma-finite such that ν t ≥ C - 1/n.

    def MeasureTheory.Measure.sigmaFiniteSetGE {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] (n : ) :
    Set α

    A measurable set such that μ.restrict (μ.sigmaFiniteSetGE ν n) is sigma-finite and for C the supremum of ν s over all measurable sets s with μ.restrict s sigma-finite, ν (μ.sigmaFiniteSetGE ν n) ≥ C - 1/n.

    Equations
    • μ.sigmaFiniteSetGE ν n = .choose
    Instances For
      theorem MeasureTheory.measurableSet_sigmaFiniteSetGE {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} [IsFiniteMeasure ν] (n : ) :
      MeasurableSet (μ.sigmaFiniteSetGE ν n)
      theorem MeasureTheory.sigmaFinite_restrict_sigmaFiniteSetGE {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] (n : ) :
      SigmaFinite (μ.restrict (μ.sigmaFiniteSetGE ν n))
      theorem MeasureTheory.measure_sigmaFiniteSetGE_le {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] (n : ) :
      ν (μ.sigmaFiniteSetGE ν n) ⨆ (s : Set α), ⨆ (_ : MeasurableSet s), ⨆ (_ : SigmaFinite (μ.restrict s)), ν s
      theorem MeasureTheory.measure_sigmaFiniteSetGE_ge {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] (n : ) :
      (⨆ (s : Set α), ⨆ (_ : MeasurableSet s), ⨆ (_ : SigmaFinite (μ.restrict s)), ν s) - 1 / n ν (μ.sigmaFiniteSetGE ν n)
      theorem MeasureTheory.tendsto_measure_sigmaFiniteSetGE {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] :
      Filter.Tendsto (fun (n : ) => ν (μ.sigmaFiniteSetGE ν n)) Filter.atTop (nhds (⨆ (s : Set α), ⨆ (_ : MeasurableSet s), ⨆ (_ : SigmaFinite (μ.restrict s)), ν s))

      A measurable set such that μ.restrict (μ.sigmaFiniteSetWRT' ν) is sigma-finite and ν (μ.sigmaFiniteSetWRT' ν) has maximal measure among such sets.

      Equations
      • μ.sigmaFiniteSetWRT' ν = ⋃ (n : ), μ.sigmaFiniteSetGE ν n
      Instances For
        theorem MeasureTheory.measurableSet_sigmaFiniteSetWRT' {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} [IsFiniteMeasure ν] :
        MeasurableSet (μ.sigmaFiniteSetWRT' ν)
        theorem MeasureTheory.sigmaFinite_restrict_sigmaFiniteSetWRT' {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] :
        SigmaFinite (μ.restrict (μ.sigmaFiniteSetWRT' ν))
        theorem MeasureTheory.measure_sigmaFiniteSetWRT' {α : Type u_1} {mα : MeasurableSpace α} (μ ν : Measure α) [IsFiniteMeasure ν] :
        ν (μ.sigmaFiniteSetWRT' ν) = ⨆ (s : Set α), ⨆ (_ : MeasurableSet s), ⨆ (_ : SigmaFinite (μ.restrict s)), ν s

        μ.sigmaFiniteSetWRT' ν has maximal ν-measure among all measurable sets s with sigma-finite μ.restrict s.

        theorem MeasureTheory.measure_eq_top_of_subset_compl_sigmaFiniteSetWRT'_of_measurableSet {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} {s : Set α} [IsFiniteMeasure ν] (hs : MeasurableSet s) (hs_subset : s (μ.sigmaFiniteSetWRT' ν)) (hνs : ν s 0) :
        μ s =

        Auxiliary lemma for measure_eq_top_of_subset_compl_sigmaFiniteSetWRT'.

        theorem MeasureTheory.measure_eq_top_of_subset_compl_sigmaFiniteSetWRT' {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} {s : Set α} [IsFiniteMeasure ν] (hs_subset : s (μ.sigmaFiniteSetWRT' ν)) (hνs : ν s 0) :
        μ s =

        For all sets s in (μ.sigmaFiniteSetWRT ν)ᶜ, if ν s ≠ 0 then μ s = ∞.

        theorem MeasureTheory.measure_eq_top_of_subset_compl_sigmaFiniteSetWRT {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} {s : Set α} [SFinite ν] (hs_subset : s (μ.sigmaFiniteSetWRT ν)) (hνs : ν s 0) :
        μ s =

        For all sets s in (μ.sigmaFiniteSetWRT ν)ᶜ, if ν s ≠ 0 then μ s = ∞.

        theorem MeasureTheory.restrict_compl_sigmaFiniteSetWRT {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} [SFinite ν] (hμν : μ.AbsolutelyContinuous ν) :
        μ.restrict (μ.sigmaFiniteSetWRT ν) = ν.restrict (μ.sigmaFiniteSetWRT ν)
        @[simp]
        theorem MeasureTheory.measure_compl_sigmaFiniteSetWRT {α : Type u_1} {mα : MeasurableSpace α} {μ ν : Measure α} (hμν : μ.AbsolutelyContinuous ν) [SigmaFinite μ] [SFinite ν] :
        ν (μ.sigmaFiniteSetWRT ν) = 0
        def MeasureTheory.Measure.sigmaFiniteSet {α : Type u_1} {mα : MeasurableSpace α} (μ : Measure α) :
        Set α

        A measurable set such that μ.restrict μ.sigmaFiniteSet is sigma-finite, and for all measurable sets s ⊆ μ.sigmaFiniteSetᶜ, either μ s = 0 or μ s = ∞.

        Equations
        • μ.sigmaFiniteSet = μ.sigmaFiniteSetWRT μ
        Instances For
          theorem MeasureTheory.measurableSet_sigmaFiniteSet {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} :
          MeasurableSet μ.sigmaFiniteSet
          theorem MeasureTheory.measure_eq_zero_or_top_of_subset_compl_sigmaFiniteSet {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} {t : Set α} [SFinite μ] (ht_subset : t μ.sigmaFiniteSet) :
          μ t = 0 μ t =
          theorem MeasureTheory.restrict_compl_sigmaFiniteSet_eq_zero_or_top {α : Type u_1} {mα : MeasurableSpace α} (μ : Measure α) [SFinite μ] (s : Set α) :
          (μ.restrict μ.sigmaFiniteSet) s = 0 (μ.restrict μ.sigmaFiniteSet) s =

          The measure μ.restrict μ.sigmaFiniteSetᶜ takes only two values: 0 and ∞ .

          instance MeasureTheory.instSigmaFiniteRestrictSigmaFiniteSet {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} :
          SigmaFinite (μ.restrict μ.sigmaFiniteSet)

          The restriction of an s-finite measure μ to μ.sigmaFiniteSet is sigma-finite.

          theorem MeasureTheory.sigmaFinite_of_measure_compl_sigmaFiniteSet_eq_zero {α : Type u_1} {mα : MeasurableSpace α} {μ : Measure α} (h : μ μ.sigmaFiniteSet = 0) :
          @[simp]
          theorem MeasureTheory.measure_compl_sigmaFiniteSet {α : Type u_1} {mα : MeasurableSpace α} (μ : Measure α) [SigmaFinite μ] :
          μ μ.sigmaFiniteSet = 0

          An s-finite measure μ is sigma-finite iff μ μ.sigmaFiniteSetᶜ = 0.