Documentation

Mathlib.MeasureTheory.Function.ConvergenceInDistribution

Convergence in distribution #

We introduce a definition of convergence in distribution of random variables: this is the weak convergence of the laws of the random variables. In Mathlib terms this is a Tendsto in the ProbabilityMeasure type.

The definition assumes that the random variables are defined on the same probability space, which is the most common setting in applications. Convergence in distribution for random variables on different probability spaces can be talked about using the ProbabilityMeasure type directly.

We also state results relating convergence in probability (TendstoInMeasure) and convergence in distribution.

Main definitions #

Main statements #

structure MeasureTheory.TendstoInDistribution {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {mE : MeasurableSpace E} [TopologicalSpace E] [OpensMeasurableSpace E] (X : ιΩE) (l : Filter ι) (Z : ΩE) (μ : Measure Ω := by volume_tac) [IsProbabilityMeasure μ] :

Convergence in distribution of random variables. This is the weak convergence of the laws of the random variables: Tendsto in the ProbabilityMeasure type.

Instances For
    theorem MeasureTheory.tendstoInDistribution_const {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {Z : ΩE} {l : Filter ι} [TopologicalSpace E] [OpensMeasurableSpace E] (hZ : AEMeasurable Z μ) :
    TendstoInDistribution (fun (x : ι) => Z) l Z μ
    @[simp]
    theorem MeasureTheory.tendstoInDistribution_of_isEmpty {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {X : ιΩE} {Z : ΩE} {l : Filter ι} [TopologicalSpace E] [IsEmpty E] :
    theorem MeasureTheory.tendstoInDistribution_unique {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {l : Filter ι} [TopologicalSpace E] [HasOuterApproxClosed E] [BorelSpace E] (X : ιΩE) {Z W : ΩE} [l.NeBot] (h1 : TendstoInDistribution X l Z μ) (h2 : TendstoInDistribution X l W μ) :
    theorem MeasureTheory.TendstoInDistribution.continuous_comp {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {X : ιΩE} {Z : ΩE} {l : Filter ι} [TopologicalSpace E] {F : Type u_4} [OpensMeasurableSpace E] [TopologicalSpace F] [MeasurableSpace F] [BorelSpace F] {g : EF} (hg : Continuous g) (h : TendstoInDistribution X l Z μ) :
    TendstoInDistribution (fun (n : ι) => g X n) l (g Z) μ

    Continuous mapping theorem: if X n tends to Z in distribution and g is continuous, then g ∘ X n tends to g ∘ Z in distribution.

    theorem MeasureTheory.tendstoInDistribution_of_tendstoInMeasure_sub {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {X : ιΩE} {l : Filter ι} [SeminormedAddCommGroup E] [SecondCountableTopology E] [BorelSpace E] [l.IsCountablyGenerated] (Y : ιΩE) (Z : ΩE) (hXZ : TendstoInDistribution X l Z μ) (hXY : TendstoInMeasure μ (Y - X) l 0) (hY : ∀ (i : ι), AEMeasurable (Y i) μ) :

    Let X, Y be two sequences of measurable functions such that X n converges in distribution to Z, and Y n - X n converges in probability to 0. Then Y n converges in distribution to Z.

    theorem MeasureTheory.TendstoInMeasure.tendstoInDistribution_of_aemeasurable {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {X : ιΩE} {Z : ΩE} {l : Filter ι} [SeminormedAddCommGroup E] [SecondCountableTopology E] [BorelSpace E] [l.IsCountablyGenerated] (h : TendstoInMeasure μ X l Z) (hX : ∀ (i : ι), AEMeasurable (X i) μ) (hZ : AEMeasurable Z μ) :

    Convergence in probability (TendstoInMeasure) implies convergence in distribution (TendstoInDistribution).

    theorem MeasureTheory.TendstoInMeasure.tendstoInDistribution {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {X : ιΩE} {Z : ΩE} {l : Filter ι} [SeminormedAddCommGroup E] [SecondCountableTopology E] [BorelSpace E] [l.NeBot] [l.IsCountablyGenerated] (h : TendstoInMeasure μ X l Z) (hX : ∀ (i : ι), AEMeasurable (X i) μ) :

    Convergence in probability (TendstoInMeasure) implies convergence in distribution (TendstoInDistribution).

    theorem MeasureTheory.TendstoInDistribution.prodMk_of_tendstoInMeasure_const {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {l : Filter ι} [SeminormedAddCommGroup E] [SecondCountableTopology E] [BorelSpace E] {E' : Type u_4} {mE' : MeasurableSpace E'} [SeminormedAddCommGroup E'] [SecondCountableTopology E'] [BorelSpace E'] [l.IsCountablyGenerated] (X : ιΩE) (Y : ιΩE') (Z : ΩE) {c : E'} (hXZ : TendstoInDistribution X l Z μ) (hY : TendstoInMeasure μ (fun (n : ι) => Y n) l fun (x : Ω) => c) (hY_meas : ∀ (i : ι), AEMeasurable (Y i) μ) :
    TendstoInDistribution (fun (n : ι) (ω : Ω) => (X n ω, Y n ω)) l (fun (ω : Ω) => (Z ω, c)) μ

    Slutsky's theorem: if X n converges in distribution to Z, and Y n converges in probability to a constant c, then the pair (X n, Y n) converges in distribution to (Z, c).

    theorem MeasureTheory.TendstoInDistribution.continuous_comp_prodMk_of_tendstoInMeasure_const {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {Z : ΩE} {l : Filter ι} [SeminormedAddCommGroup E] [SecondCountableTopology E] [BorelSpace E] {E' : Type u_4} {F : Type u_5} {mE' : MeasurableSpace E'} [SeminormedAddCommGroup E'] [SecondCountableTopology E'] [BorelSpace E'] [TopologicalSpace F] [MeasurableSpace F] [BorelSpace F] {g : E × E'F} (hg : Continuous g) [l.IsCountablyGenerated] {X : ιΩE} {Y : ιΩE'} {c : E'} (hXZ : TendstoInDistribution X l Z μ) (hY_tendsto : TendstoInMeasure μ (fun (n : ι) => Y n) l fun (x : Ω) => c) (hY : ∀ (i : ι), AEMeasurable (Y i) μ) :
    TendstoInDistribution (fun (n : ι) (ω : Ω) => g (X n ω, Y n ω)) l (fun (ω : Ω) => g (Z ω, c)) μ

    Slutsky's theorem for a continuous function: if X n converges in distribution to Z, Y n converges in probability to a constant c, and g is a continuous function, then g (X n, Y n) converges in distribution to g (Z, c).

    theorem MeasureTheory.TendstoInDistribution.add_of_tendstoInMeasure_const {Ω : Type u_1} {ι : Type u_2} {E : Type u_3} {m : MeasurableSpace Ω} {μ : Measure Ω} [IsProbabilityMeasure μ] {mE : MeasurableSpace E} {X Y : ιΩE} {Z : ΩE} {l : Filter ι} [SeminormedAddCommGroup E] [SecondCountableTopology E] [BorelSpace E] [l.IsCountablyGenerated] {c : E} (hXZ : TendstoInDistribution X l Z μ) (hY_tendsto : TendstoInMeasure μ (fun (n : ι) => Y n) l fun (x : Ω) => c) (hY : ∀ (i : ι), AEMeasurable (Y i) μ) :
    TendstoInDistribution (fun (n : ι) => X n + Y n) l (fun (ω : Ω) => Z ω + c) μ