Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.CompareExp

Compare Lp seminorms for different values of p #

In this file we compare MeasureTheory.eLpNorm' and MeasureTheory.eLpNorm for different exponents.

theorem MeasureTheory.eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : } (hp0_lt : 0 < p) (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
@[deprecated MeasureTheory.eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ (since := "2024-07-27")]
theorem MeasureTheory.snorm'_le_snorm'_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : } (hp0_lt : 0 < p) (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :

Alias of MeasureTheory.eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ.

@[deprecated MeasureTheory.eLpNorm'_le_eLpNormEssSup_mul_rpow_measure_univ (since := "2024-07-27")]
theorem MeasureTheory.snorm'_le_snormEssSup_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {q : } (hq_pos : 0 < q) :

Alias of MeasureTheory.eLpNorm'_le_eLpNormEssSup_mul_rpow_measure_univ.

theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : ENNReal} (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
MeasureTheory.eLpNorm f p μ MeasureTheory.eLpNorm f q μ * μ Set.univ ^ (1 / p.toReal - 1 / q.toReal)
@[deprecated MeasureTheory.eLpNorm_le_eLpNorm_mul_rpow_measure_univ (since := "2024-07-27")]
theorem MeasureTheory.snorm_le_snorm_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : ENNReal} (hpq : p q) (hf : MeasureTheory.AEStronglyMeasurable f μ) :
MeasureTheory.eLpNorm f p μ MeasureTheory.eLpNorm f q μ * μ Set.univ ^ (1 / p.toReal - 1 / q.toReal)

Alias of MeasureTheory.eLpNorm_le_eLpNorm_mul_rpow_measure_univ.

@[deprecated MeasureTheory.eLpNorm'_le_eLpNorm'_of_exponent_le (since := "2024-07-27")]

Alias of MeasureTheory.eLpNorm'_le_eLpNorm'_of_exponent_le.

@[deprecated MeasureTheory.eLpNorm'_le_eLpNormEssSup (since := "2024-07-27")]

Alias of MeasureTheory.eLpNorm'_le_eLpNormEssSup.

@[deprecated MeasureTheory.eLpNorm_le_eLpNorm_of_exponent_le (since := "2024-07-27")]

Alias of MeasureTheory.eLpNorm_le_eLpNorm_of_exponent_le.

@[deprecated MeasureTheory.eLpNorm'_lt_top_of_eLpNorm'_lt_top_of_exponent_le (since := "2024-07-27")]
theorem MeasureTheory.snorm'_lt_top_of_snorm'_lt_top_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {f : αE} {p q : } [MeasureTheory.IsFiniteMeasure μ] (hf : MeasureTheory.AEStronglyMeasurable f μ) (hfq_lt_top : MeasureTheory.eLpNorm' f q μ < ) (hp_nonneg : 0 p) (hpq : p q) :

Alias of MeasureTheory.eLpNorm'_lt_top_of_eLpNorm'_lt_top_of_exponent_le.

theorem MeasureTheory.Memℒp.mono_exponent {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hfq : MeasureTheory.Memℒp f q μ) (hpq : p q) :
@[deprecated MeasureTheory.Memℒp.mono_exponent (since := "2025-01-07")]
theorem MeasureTheory.Memℒp.memℒp_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} [MeasureTheory.IsFiniteMeasure μ] {f : αE} (hfq : MeasureTheory.Memℒp f q μ) (hpq : p q) :

Alias of MeasureTheory.Memℒp.mono_exponent.

theorem MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} {f : αE} (hfq : MeasureTheory.Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :

If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

@[deprecated MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top (since := "2025-01-07")]
theorem MeasureTheory.Memℒp.memℒp_of_exponent_le_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : MeasureTheory.Measure α} {p q : ENNReal} {f : αE} (hfq : MeasureTheory.Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :

Alias of MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top.


If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

theorem MeasureTheory.eLpNorm_le_eLpNorm_top_mul_eLpNorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) (f : αE) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f μ * MeasureTheory.eLpNorm g p μ
@[deprecated MeasureTheory.eLpNorm_le_eLpNorm_top_mul_eLpNorm (since := "2024-07-27")]
theorem MeasureTheory.snorm_le_snorm_top_mul_snorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) (f : αE) {g : αF} (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f μ * MeasureTheory.eLpNorm g p μ

Alias of MeasureTheory.eLpNorm_le_eLpNorm_top_mul_eLpNorm.

theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_top {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (g : αF) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f p μ * MeasureTheory.eLpNorm g μ
@[deprecated MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_top (since := "2024-07-27")]
theorem MeasureTheory.snorm_le_snorm_mul_snorm_top {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} (p : ENNReal) {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) (g : αF) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f p μ * MeasureTheory.eLpNorm g μ

Alias of MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_top.

theorem MeasureTheory.eLpNorm'_le_eLpNorm'_mul_eLpNorm' {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : } (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm' (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm' f q μ * MeasureTheory.eLpNorm' g r μ
@[deprecated MeasureTheory.eLpNorm'_le_eLpNorm'_mul_eLpNorm' (since := "2024-07-27")]
theorem MeasureTheory.snorm'_le_snorm'_mul_snorm' {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : } (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm' (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm' f q μ * MeasureTheory.eLpNorm' g r μ

Alias of MeasureTheory.eLpNorm'_le_eLpNorm'_mul_eLpNorm'.

theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_of_nnnorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f q μ * MeasureTheory.eLpNorm g r μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

@[deprecated MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_of_nnnorm (since := "2024-07-27")]
theorem MeasureTheory.snorm_le_snorm_mul_snorm_of_nnnorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x)‖₊ f x‖₊ * g x‖₊) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f q μ * MeasureTheory.eLpNorm g r μ

Alias of MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_of_nnnorm.


Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm'_of_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x) f x * g x) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f q μ * MeasureTheory.eLpNorm g r μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

@[deprecated MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm'_of_norm (since := "2024-07-27")]
theorem MeasureTheory.snorm_le_snorm_mul_snorm'_of_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : MeasureTheory.Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : MeasureTheory.AEStronglyMeasurable f μ) (hg : MeasureTheory.AEStronglyMeasurable g μ) (b : EFG) (h : ∀ᵐ (x : α) ∂μ, b (f x) (g x) f x * g x) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.eLpNorm (fun (x : α) => b (f x) (g x)) p μ MeasureTheory.eLpNorm f q μ * MeasureTheory.eLpNorm g r μ

Alias of MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm'_of_norm.


Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.eLpNorm_smul_le_eLpNorm_top_mul_eLpNorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (p : ENNReal) (hf : MeasureTheory.AEStronglyMeasurable f μ) (φ : α𝕜) :
@[deprecated MeasureTheory.eLpNorm_smul_le_eLpNorm_top_mul_eLpNorm (since := "2024-07-27")]
theorem MeasureTheory.snorm_smul_le_snorm_top_mul_snorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (p : ENNReal) (hf : MeasureTheory.AEStronglyMeasurable f μ) (φ : α𝕜) :

Alias of MeasureTheory.eLpNorm_smul_le_eLpNorm_top_mul_eLpNorm.

theorem MeasureTheory.eLpNorm_smul_le_eLpNorm_mul_eLpNorm_top {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) (f : αE) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) :
@[deprecated MeasureTheory.eLpNorm_smul_le_eLpNorm_mul_eLpNorm_top (since := "2024-07-27")]
theorem MeasureTheory.snorm_smul_le_snorm_mul_snorm_top {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) (f : αE) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) :

Alias of MeasureTheory.eLpNorm_smul_le_eLpNorm_mul_eLpNorm_top.

theorem MeasureTheory.eLpNorm'_smul_le_mul_eLpNorm' {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : } {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
@[deprecated MeasureTheory.eLpNorm'_smul_le_mul_eLpNorm' (since := "2024-07-27")]
theorem MeasureTheory.snorm'_smul_le_mul_snorm' {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : } {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :

Alias of MeasureTheory.eLpNorm'_smul_le_mul_eLpNorm'.

theorem MeasureTheory.eLpNorm_smul_le_mul_eLpNorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hpqr : 1 / p = 1 / q + 1 / r) :

Hölder's inequality, as an inequality on the ℒp seminorm of a scalar product φ • f.

@[deprecated MeasureTheory.eLpNorm_smul_le_mul_eLpNorm (since := "2024-07-27")]
theorem MeasureTheory.snorm_smul_le_mul_snorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} (hf : MeasureTheory.AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : MeasureTheory.AEStronglyMeasurable φ μ) (hpqr : 1 / p = 1 / q + 1 / r) :

Alias of MeasureTheory.eLpNorm_smul_le_mul_eLpNorm.


Hölder's inequality, as an inequality on the ℒp seminorm of a scalar product φ • f.

theorem MeasureTheory.Memℒp.smul {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f r μ) (hφ : MeasureTheory.Memℒp φ q μ) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.Memℒp.smul_of_top_right {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (hφ : MeasureTheory.Memℒp φ μ) :
theorem MeasureTheory.Memℒp.smul_of_top_left {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : MeasureTheory.Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p : ENNReal} {f : αE} {φ : α𝕜} (hf : MeasureTheory.Memℒp f μ) (hφ : MeasureTheory.Memℒp φ p μ) :
theorem MeasureTheory.Memℒp.mul {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f r μ) (hφ : MeasureTheory.Memℒp φ q μ) (hpqr : 1 / p = 1 / q + 1 / r) :
theorem MeasureTheory.Memℒp.mul' {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f r μ) (hφ : MeasureTheory.Memℒp φ q μ) (hpqr : 1 / p = 1 / q + 1 / r) :
MeasureTheory.Memℒp (fun (x : α) => φ x * f x) p μ

Variant of Memℒp.mul where the function is written as fun x ↦ φ x * f x instead of φ * f.

theorem MeasureTheory.Memℒp.mul_of_top_right {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (hφ : MeasureTheory.Memℒp φ μ) :
theorem MeasureTheory.Memℒp.mul_of_top_right' {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f p μ) (hφ : MeasureTheory.Memℒp φ μ) :
MeasureTheory.Memℒp (fun (x : α) => φ x * f x) p μ

Variant of Memℒp.mul_of_top_right where the function is written as fun x ↦ φ x * f x instead of φ * f.

theorem MeasureTheory.Memℒp.mul_of_top_left {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f μ) (hφ : MeasureTheory.Memℒp φ p μ) :
theorem MeasureTheory.Memℒp.mul_of_top_left' {α : Type u_1} [MeasurableSpace α] {𝕜 : Type u_2} [NormedRing 𝕜] {μ : MeasureTheory.Measure α} {p : ENNReal} {f φ : α𝕜} (hf : MeasureTheory.Memℒp f μ) (hφ : MeasureTheory.Memℒp φ p μ) :
MeasureTheory.Memℒp (fun (x : α) => φ x * f x) p μ

Variant of Memℒp.mul_of_top_left where the function is written as fun x ↦ φ x * f x instead of φ * f.