Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.CompareExp

Compare Lp seminorms for different values of p #

In this file we compare MeasureTheory.eLpNorm' and MeasureTheory.eLpNorm for different exponents.

theorem MeasureTheory.eLpNorm'_le_eLpNorm'_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {f : αE} {p q : } (hp0_lt : 0 < p) (hpq : p q) (hf : AEStronglyMeasurable f μ) :
eLpNorm' f p μ eLpNorm' f q μ * μ Set.univ ^ (1 / p - 1 / q)
theorem MeasureTheory.eLpNorm'_le_eLpNormEssSup_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {f : αE} {q : } (hq_pos : 0 < q) :
eLpNorm' f q μ eLpNormEssSup f μ * μ Set.univ ^ (1 / q)
theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_rpow_measure_univ {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {f : αE} {p q : ENNReal} (hpq : p q) (hf : AEStronglyMeasurable f μ) :
eLpNorm f p μ eLpNorm f q μ * μ Set.univ ^ (1 / p.toReal - 1 / q.toReal)
theorem MeasureTheory.eLpNorm'_le_eLpNorm'_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {f : αE} {p q : } (hp0_lt : 0 < p) (hpq : p q) (μ : Measure α) [IsProbabilityMeasure μ] (hf : AEStronglyMeasurable f μ) :
eLpNorm' f p μ eLpNorm' f q μ
theorem MeasureTheory.eLpNorm'_le_eLpNormEssSup {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {f : αE} {q : } (hq_pos : 0 < q) [IsProbabilityMeasure μ] :
theorem MeasureTheory.eLpNorm_le_eLpNorm_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {f : αE} {p q : ENNReal} (hpq : p q) [IsProbabilityMeasure μ] (hf : AEStronglyMeasurable f μ) :
eLpNorm f p μ eLpNorm f q μ
theorem MeasureTheory.eLpNorm'_lt_top_of_eLpNorm'_lt_top_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {f : αE} {p q : } [IsFiniteMeasure μ] (hf : AEStronglyMeasurable f μ) (hfq_lt_top : eLpNorm' f q μ < ) (hp_nonneg : 0 p) (hpq : p q) :
eLpNorm' f p μ <
theorem MeasureTheory.Memℒp.mono_exponent {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {p q : ENNReal} [IsFiniteMeasure μ] {f : αE} (hfq : Memℒp f q μ) (hpq : p q) :
Memℒp f p μ
@[deprecated MeasureTheory.Memℒp.mono_exponent (since := "2025-01-07")]
theorem MeasureTheory.Memℒp.memℒp_of_exponent_le {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {p q : ENNReal} [IsFiniteMeasure μ] {f : αE} (hfq : Memℒp f q μ) (hpq : p q) :
Memℒp f p μ

Alias of MeasureTheory.Memℒp.mono_exponent.

theorem MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {p q : ENNReal} {f : αE} (hfq : Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :
Memℒp f p μ

If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

@[deprecated MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top (since := "2025-01-07")]
theorem MeasureTheory.Memℒp.memℒp_of_exponent_le_of_measure_support_ne_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} [NormedAddCommGroup E] {μ : Measure α} {p q : ENNReal} {f : αE} (hfq : Memℒp f q μ) {s : Set α} (hf : xs, f x = 0) (hs : μ s ) (hpq : p q) :
Memℒp f p μ

Alias of MeasureTheory.Memℒp.mono_exponent_of_measure_support_ne_top.


If a function is supported on a finite-measure set and belongs to ℒ^p, then it belongs to ℒ^q for any q ≤ p.

theorem MeasureTheory.eLpNorm_le_eLpNorm_top_mul_eLpNorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : Measure α} (p : ENNReal) (f : αE) {g : αF} (hg : AEStronglyMeasurable g μ) (b : EFG) (c : NNReal) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ c * f x‖₊ * g x‖₊) :
eLpNorm (fun (x : α) => b (f x) (g x)) p μ c * eLpNorm f μ * eLpNorm g p μ
theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_top {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : Measure α} (p : ENNReal) {f : αE} (hf : AEStronglyMeasurable f μ) (g : αF) (b : EFG) (c : NNReal) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ c * f x‖₊ * g x‖₊) :
eLpNorm (fun (x : α) => b (f x) (g x)) p μ c * eLpNorm f p μ * eLpNorm g μ
theorem MeasureTheory.eLpNorm'_le_eLpNorm'_mul_eLpNorm' {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : Measure α} {f : αE} {g : αF} {p q r : } (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) (b : EFG) (c : NNReal) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ c * f x‖₊ * g x‖₊) (hro_lt : 0 < r) (hrp : r < p) (hpqr : 1 / r = 1 / p + 1 / q) :
eLpNorm' (fun (x : α) => b (f x) (g x)) r μ c * eLpNorm' f p μ * eLpNorm' g q μ
theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm_of_nnnorm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) (b : EFG) (c : NNReal) (h : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ c * f x‖₊ * g x‖₊) [hpqr : p.HolderTriple q r] :
eLpNorm (fun (x : α) => b (f x) (g x)) r μ c * eLpNorm f p μ * eLpNorm g q μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.eLpNorm_le_eLpNorm_mul_eLpNorm'_of_norm {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : Measure α} {f : αE} {g : αF} {p q r : ENNReal} (hf : AEStronglyMeasurable f μ) (hg : AEStronglyMeasurable g μ) (b : EFG) (c : NNReal) (h : ∀ᵐ (x : α) μ, b (f x) (g x) c * f x * g x) [hpqr : p.HolderTriple q r] :
eLpNorm (fun (x : α) => b (f x) (g x)) r μ c * eLpNorm f p μ * eLpNorm g q μ

Hölder's inequality, as an inequality on the ℒp seminorm of an elementwise operation fun x => b (f x) (g x).

theorem MeasureTheory.Memℒp.of_bilin {α : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} {m : MeasurableSpace α} [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] {μ : Measure α} {p q r : ENNReal} {f : αE} {g : αF} (b : EFG) (c : NNReal) (hf : Memℒp f p μ) (hg : Memℒp g q μ) (h : AEStronglyMeasurable (fun (x : α) => b (f x) (g x)) μ) (hb : ∀ᵐ (x : α) μ, b (f x) (g x)‖₊ c * f x‖₊ * g x‖₊) [hpqr : p.HolderTriple q r] :
Memℒp (fun (x : α) => b (f x) (g x)) r μ
theorem MeasureTheory.eLpNorm_smul_le_eLpNorm_top_mul_eLpNorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {f : αE} (p : ENNReal) (hf : AEStronglyMeasurable f μ) (φ : α𝕜) :
eLpNorm (φ f) p μ eLpNorm φ μ * eLpNorm f p μ
theorem MeasureTheory.eLpNorm_smul_le_eLpNorm_mul_eLpNorm_top {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] (p : ENNReal) (f : αE) {φ : α𝕜} (hφ : AEStronglyMeasurable φ μ) :
eLpNorm (φ f) p μ eLpNorm φ p μ * eLpNorm f μ
theorem MeasureTheory.eLpNorm'_smul_le_mul_eLpNorm' {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : } {f : αE} (hf : AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : AEStronglyMeasurable φ μ) (hp0_lt : 0 < p) (hpq : p < q) (hpqr : 1 / p = 1 / q + 1 / r) :
eLpNorm' (φ f) p μ eLpNorm' φ q μ * eLpNorm' f r μ
theorem MeasureTheory.eLpNorm_smul_le_mul_eLpNorm {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} (hf : AEStronglyMeasurable f μ) {φ : α𝕜} (hφ : AEStronglyMeasurable φ μ) [hpqr : p.HolderTriple q r] :
eLpNorm (φ f) r μ eLpNorm φ p μ * eLpNorm f q μ

Hölder's inequality, as an inequality on the ℒp seminorm of a scalar product φ • f.

theorem MeasureTheory.Memℒp.smul {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} {φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (φ f) r μ
@[deprecated MeasureTheory.Memℒp.smul (since := "2025-02-13")]
theorem MeasureTheory.Memℒp.smul_of_top_right {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} {φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (φ f) r μ

Alias of MeasureTheory.Memℒp.smul.

@[deprecated MeasureTheory.Memℒp.smul (since := "2025-02-13")]
theorem MeasureTheory.Memℒp.smul_of_top_left {𝕜 : Type u_1} {α : Type u_2} {E : Type u_3} {m : MeasurableSpace α} {μ : Measure α} [NormedRing 𝕜] [NormedAddCommGroup E] [MulActionWithZero 𝕜 E] [BoundedSMul 𝕜 E] {p q r : ENNReal} {f : αE} {φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (φ f) r μ

Alias of MeasureTheory.Memℒp.smul.

theorem MeasureTheory.Memℒp.mul {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (φ * f) r μ
theorem MeasureTheory.Memℒp.mul' {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (fun (x : α) => φ x * f x) r μ

Variant of Memℒp.mul where the function is written as fun x ↦ φ x * f x instead of φ * f.

@[deprecated MeasureTheory.Memℒp.mul (since := "2025-02-13")]
theorem MeasureTheory.Memℒp.mul_of_top_right {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (φ * f) r μ

Alias of MeasureTheory.Memℒp.mul.

@[deprecated MeasureTheory.Memℒp.mul' (since := "2025-02-13")]
theorem MeasureTheory.Memℒp.mul_of_top_right' {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (fun (x : α) => φ x * f x) r μ

Alias of MeasureTheory.Memℒp.mul'.


Variant of Memℒp.mul where the function is written as fun x ↦ φ x * f x instead of φ * f.

@[deprecated MeasureTheory.Memℒp.mul (since := "2025-02-13")]
theorem MeasureTheory.Memℒp.mul_of_top_left {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (φ * f) r μ

Alias of MeasureTheory.Memℒp.mul.

@[deprecated MeasureTheory.Memℒp.mul' (since := "2025-02-13")]
theorem MeasureTheory.Memℒp.mul_of_top_left' {α : Type u_1} {x✝ : MeasurableSpace α} {𝕜 : Type u_2} [NormedRing 𝕜] {μ : Measure α} {p q r : ENNReal} {f φ : α𝕜} (hf : Memℒp f q μ) (hφ : Memℒp φ p μ) [hpqr : p.HolderTriple q r] :
Memℒp (fun (x : α) => φ x * f x) r μ

Alias of MeasureTheory.Memℒp.mul'.


Variant of Memℒp.mul where the function is written as fun x ↦ φ x * f x instead of φ * f.

theorem MeasureTheory.Memℒp.prod {ι : Type u_1} {α : Type u_2} {𝕜 : Type u_3} {x✝ : MeasurableSpace α} [NormedCommRing 𝕜] {μ : Measure α} {f : ια𝕜} {p : ιENNReal} {s : Finset ι} (hf : is, Memℒp (f i) (p i) μ) :
Memℒp (∏ is, f i) (∑ is, (p i)⁻¹)⁻¹ μ

See Memℒp.prod' for the applied version.

theorem MeasureTheory.Memℒp.prod' {ι : Type u_1} {α : Type u_2} {𝕜 : Type u_3} {x✝ : MeasurableSpace α} [NormedCommRing 𝕜] {μ : Measure α} {f : ια𝕜} {p : ιENNReal} {s : Finset ι} (hf : is, Memℒp (f i) (p i) μ) :
Memℒp (fun (ω : α) => is, f i ω) (∑ is, (p i)⁻¹)⁻¹ μ

See Memℒp.prod for the unapplied version.