Documentation

Mathlib.MeasureTheory.Function.LpSpace.Complete

Lp is a complete space #

In this file we show that Lp is a complete space for 1 ≤ p, in MeasureTheory.Lp.instCompleteSpace.

theorem MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {f : ιαE} {p : } {f_lim : αE} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
eLpNorm' f_lim p μ = (∫⁻ (a : α), Filter.liminf (fun (x : ι) => f x a‖ₑ ^ p) Filter.atTop μ) ^ (1 / p)
theorem MeasureTheory.Lp.eLpNorm'_lim_le_liminf_eLpNorm' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {f : αE} {p : } (hp_pos : 0 < p) (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) {f_lim : αE} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
eLpNorm' f_lim p μ Filter.liminf (fun (n : ) => eLpNorm' (f n) p μ) Filter.atTop
theorem MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} [Nonempty ι] [LinearOrder ι] {f : ιαE} {f_lim : αE} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
eLpNorm f_lim μ = essSup (fun (x : α) => Filter.liminf (fun (m : ι) => f m x‖ₑ) Filter.atTop) μ
theorem MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} [Nonempty ι] [Countable ι] [LinearOrder ι] {f : ιαE} {f_lim : αE} (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x))) :
eLpNorm f_lim μ Filter.liminf (fun (n : ι) => eLpNorm (f n) μ) Filter.atTop
theorem MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (f_lim : αE) (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
eLpNorm f_lim p μ Filter.liminf (fun (n : ) => eLpNorm (f n) p μ) Filter.atTop

Lp is complete iff Cauchy sequences of ℒp have limits in ℒp #

theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] (f : ι(Lp E p μ)) (f_lim : (Lp E p μ)) :
Filter.Tendsto f fi (nhds f_lim) Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)
@[deprecated MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm' (since := "2025-02-21")]
theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] (f : ι(Lp E p μ)) (f_lim : (Lp E p μ)) :
Filter.Tendsto f fi (nhds f_lim) Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)

Alias of MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm'.

theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] (f : ι(Lp E p μ)) (f_lim : αE) (f_lim_ℒp : MemLp f_lim p μ) :
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)
@[deprecated MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm (since := "2025-02-21")]
theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] (f : ι(Lp E p μ)) (f_lim : αE) (f_lim_ℒp : MemLp f_lim p μ) :
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)

Alias of MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm.

theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm'' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] (f : ιαE) (f_ℒp : ∀ (n : ι), MemLp (f n) p μ) (f_lim : αE) (f_lim_ℒp : MemLp f_lim p μ) :
Filter.Tendsto (fun (n : ι) => MemLp.toLp (f n) ) fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => eLpNorm (f n - f_lim) p μ) fi (nhds 0)
@[deprecated MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm'' (since := "2025-02-21")]
theorem MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp'' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] (f : ιαE) (f_ℒp : ∀ (n : ι), MemLp (f n) p μ) (f_lim : αE) (f_lim_ℒp : MemLp f_lim p μ) :
Filter.Tendsto (fun (n : ι) => MemLp.toLp (f n) ) fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) Filter.Tendsto (fun (n : ι) => eLpNorm (f n - f_lim) p μ) fi (nhds 0)

Alias of MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm''.

theorem MeasureTheory.Lp.tendsto_Lp_of_tendsto_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] {f : ι(Lp E p μ)} (f_lim : αE) (f_lim_ℒp : MemLp f_lim p μ) (h_tendsto : Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)) :
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp))
@[deprecated MeasureTheory.Lp.tendsto_Lp_of_tendsto_eLpNorm (since := "2025-02-21")]
theorem MeasureTheory.Lp.tendsto_Lp_of_tendsto_ℒp {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} {fi : Filter ι} [Fact (1 p)] {f : ι(Lp E p μ)} (f_lim : αE) (f_lim_ℒp : MemLp f_lim p μ) (h_tendsto : Filter.Tendsto (fun (n : ι) => eLpNorm ((f n) - f_lim) p μ) fi (nhds 0)) :
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp))

Alias of MeasureTheory.Lp.tendsto_Lp_of_tendsto_eLpNorm.

theorem MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} [Nonempty ι] [SemilatticeSup ι] [hp : Fact (1 p)] (f : ι(Lp E p μ)) :
CauchySeq f Filter.Tendsto (fun (n : ι × ι) => eLpNorm ((f n.1) - (f n.2)) p μ) Filter.atTop (nhds 0)
@[deprecated MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm (since := "2025-02-21")]
theorem MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_ℒp {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {ι : Type u_3} [Nonempty ι] [SemilatticeSup ι] [hp : Fact (1 p)] (f : ι(Lp E p μ)) :
CauchySeq f Filter.Tendsto (fun (n : ι × ι) => eLpNorm ((f n.1) - (f n.2)) p μ) Filter.atTop (nhds 0)

Alias of MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm.

theorem MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [hp : Fact (1 p)] (H : ∀ (f : αE), (∀ (n : ), MemLp (f n) p μ)∀ (B : ENNReal), ∑' (i : ), B i < (∀ (N n m_1 : ), N nN m_1eLpNorm (f n - f m_1) p μ < B N)∃ (f_lim : αE), MemLp f_lim p μ Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
CompleteSpace (Lp E p μ)
@[deprecated MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm (since := "2025-02-21")]
theorem MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_ℒp {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [hp : Fact (1 p)] (H : ∀ (f : αE), (∀ (n : ), MemLp (f n) p μ)∀ (B : ENNReal), ∑' (i : ), B i < (∀ (N n m_1 : ), N nN m_1eLpNorm (f n - f m_1) p μ < B N)∃ (f_lim : αE), MemLp f_lim p μ Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
CompleteSpace (Lp E p μ)

Alias of MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm.

Prove that controlled Cauchy sequences of ℒp have limits in ℒp #

theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm' {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} {p : } (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hp1 : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m_1 : ), N nN m_1eLpNorm' (f n - f m_1) p μ < B N) :
∀ᵐ (x : α) μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)
theorem MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (hp : 1 p) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m_1 : ), N nN m_1eLpNorm (f n - f m_1) p μ < B N) :
∀ᵐ (x : α) μ, ∃ (l : E), Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds l)
theorem MeasureTheory.Lp.cauchy_tendsto_of_tendsto {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] {f : αE} (hf : ∀ (n : ), AEStronglyMeasurable (f n) μ) (f_lim : αE) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m_1 : ), N nN m_1eLpNorm (f n - f m_1) p μ < B N) (h_lim : ∀ᵐ (x : α) μ, Filter.Tendsto (fun (n : ) => f n x) Filter.atTop (nhds (f_lim x))) :
Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
theorem MeasureTheory.Lp.memLp_of_cauchy_tendsto {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), MemLp (f n) p μ) (f_lim : αE) (h_lim_meas : AEStronglyMeasurable f_lim μ) (h_tendsto : Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
MemLp f_lim p μ
@[deprecated MeasureTheory.Lp.memLp_of_cauchy_tendsto (since := "2025-02-21")]
theorem MeasureTheory.Lp.memℒp_of_cauchy_tendsto {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), MemLp (f n) p μ) (f_lim : αE) (h_lim_meas : AEStronglyMeasurable f_lim μ) (h_tendsto : Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)) :
MemLp f_lim p μ

Alias of MeasureTheory.Lp.memLp_of_cauchy_tendsto.

theorem MeasureTheory.Lp.cauchy_complete_eLpNorm {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), MemLp (f n) p μ) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m_1 : ), N nN m_1eLpNorm (f n - f m_1) p μ < B N) :
∃ (f_lim : αE), MemLp f_lim p μ Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
@[deprecated MeasureTheory.Lp.cauchy_complete_eLpNorm (since := "2025-02-21")]
theorem MeasureTheory.Lp.cauchy_complete_ℒp {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] (hp : 1 p) {f : αE} (hf : ∀ (n : ), MemLp (f n) p μ) {B : ENNReal} (hB : ∑' (i : ), B i ) (h_cau : ∀ (N n m_1 : ), N nN m_1eLpNorm (f n - f m_1) p μ < B N) :
∃ (f_lim : αE), MemLp f_lim p μ Filter.Tendsto (fun (n : ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)

Alias of MeasureTheory.Lp.cauchy_complete_eLpNorm.

instance MeasureTheory.Lp.instCompleteSpace {α : Type u_1} {E : Type u_2} {m : MeasurableSpace α} {p : ENNReal} {μ : Measure α} [NormedAddCommGroup E] [CompleteSpace E] [hp : Fact (1 p)] :
CompleteSpace (Lp E p μ)

Lp is complete for 1 ≤ p.