Lp
is a complete space #
In this file we show that Lp
is a complete space for 1 ≤ p
,
in MeasureTheory.Lp.instCompleteSpace
.
theorem
MeasureTheory.Lp.eLpNorm'_lim_eq_lintegral_liminf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
[Nonempty ι]
[LinearOrder ι]
{f : ι → α → E}
{p : ℝ}
{f_lim : α → E}
(h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x)))
:
theorem
MeasureTheory.Lp.eLpNorm'_lim_le_liminf_eLpNorm'
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{f : ℕ → α → E}
{p : ℝ}
(hp_pos : 0 < p)
(hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ)
{f_lim : α → E}
(h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds (f_lim x)))
:
theorem
MeasureTheory.Lp.eLpNorm_exponent_top_lim_eq_essSup_liminf
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
[Nonempty ι]
[LinearOrder ι]
{f : ι → α → E}
{f_lim : α → E}
(h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x)))
:
theorem
MeasureTheory.Lp.eLpNorm_exponent_top_lim_le_liminf_eLpNorm_exponent_top
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
[Nonempty ι]
[Countable ι]
[LinearOrder ι]
{f : ι → α → E}
{f_lim : α → E}
(h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ι) => f n x) Filter.atTop (nhds (f_lim x)))
:
theorem
MeasureTheory.Lp.eLpNorm_lim_le_liminf_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ)
(f_lim : α → E)
(h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds (f_lim x)))
:
Lp
is complete iff Cauchy sequences of ℒp
have limits in ℒp
#
theorem
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm'
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
(f : ι → ↥(Lp E p μ))
(f_lim : ↥(Lp E p μ))
:
Filter.Tendsto f fi (nhds f_lim) ↔ Filter.Tendsto (fun (n : ι) => eLpNorm (↑↑(f n) - ↑↑f_lim) p μ) fi (nhds 0)
@[deprecated MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm' (since := "2025-02-21")]
theorem
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp'
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
(f : ι → ↥(Lp E p μ))
(f_lim : ↥(Lp E p μ))
:
Filter.Tendsto f fi (nhds f_lim) ↔ Filter.Tendsto (fun (n : ι) => eLpNorm (↑↑(f n) - ↑↑f_lim) p μ) fi (nhds 0)
theorem
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
(f : ι → ↥(Lp E p μ))
(f_lim : α → E)
(f_lim_ℒp : MemLp f_lim p μ)
:
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) ↔ Filter.Tendsto (fun (n : ι) => eLpNorm (↑↑(f n) - f_lim) p μ) fi (nhds 0)
@[deprecated MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm (since := "2025-02-21")]
theorem
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
(f : ι → ↥(Lp E p μ))
(f_lim : α → E)
(f_lim_ℒp : MemLp f_lim p μ)
:
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) ↔ Filter.Tendsto (fun (n : ι) => eLpNorm (↑↑(f n) - f_lim) p μ) fi (nhds 0)
theorem
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm''
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
(f : ι → α → E)
(f_ℒp : ∀ (n : ι), MemLp (f n) p μ)
(f_lim : α → E)
(f_lim_ℒp : MemLp f_lim p μ)
:
Filter.Tendsto (fun (n : ι) => MemLp.toLp (f n) ⋯) fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) ↔ Filter.Tendsto (fun (n : ι) => eLpNorm (f n - f_lim) p μ) fi (nhds 0)
@[deprecated MeasureTheory.Lp.tendsto_Lp_iff_tendsto_eLpNorm'' (since := "2025-02-21")]
theorem
MeasureTheory.Lp.tendsto_Lp_iff_tendsto_ℒp''
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
(f : ι → α → E)
(f_ℒp : ∀ (n : ι), MemLp (f n) p μ)
(f_lim : α → E)
(f_lim_ℒp : MemLp f_lim p μ)
:
Filter.Tendsto (fun (n : ι) => MemLp.toLp (f n) ⋯) fi (nhds (MemLp.toLp f_lim f_lim_ℒp)) ↔ Filter.Tendsto (fun (n : ι) => eLpNorm (f n - f_lim) p μ) fi (nhds 0)
theorem
MeasureTheory.Lp.tendsto_Lp_of_tendsto_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
{f : ι → ↥(Lp E p μ)}
(f_lim : α → E)
(f_lim_ℒp : MemLp f_lim p μ)
(h_tendsto : Filter.Tendsto (fun (n : ι) => eLpNorm (↑↑(f n) - f_lim) p μ) fi (nhds 0))
:
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp))
@[deprecated MeasureTheory.Lp.tendsto_Lp_of_tendsto_eLpNorm (since := "2025-02-21")]
theorem
MeasureTheory.Lp.tendsto_Lp_of_tendsto_ℒp
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
{fi : Filter ι}
[Fact (1 ≤ p)]
{f : ι → ↥(Lp E p μ)}
(f_lim : α → E)
(f_lim_ℒp : MemLp f_lim p μ)
(h_tendsto : Filter.Tendsto (fun (n : ι) => eLpNorm (↑↑(f n) - f_lim) p μ) fi (nhds 0))
:
Filter.Tendsto f fi (nhds (MemLp.toLp f_lim f_lim_ℒp))
theorem
MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
[Nonempty ι]
[SemilatticeSup ι]
[hp : Fact (1 ≤ p)]
(f : ι → ↥(Lp E p μ))
:
CauchySeq f ↔ Filter.Tendsto (fun (n : ι × ι) => eLpNorm (↑↑(f n.1) - ↑↑(f n.2)) p μ) Filter.atTop (nhds 0)
@[deprecated MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm (since := "2025-02-21")]
theorem
MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_ℒp
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{ι : Type u_3}
[Nonempty ι]
[SemilatticeSup ι]
[hp : Fact (1 ≤ p)]
(f : ι → ↥(Lp E p μ))
:
CauchySeq f ↔ Filter.Tendsto (fun (n : ι × ι) => eLpNorm (↑↑(f n.1) - ↑↑(f n.2)) p μ) Filter.atTop (nhds 0)
Alias of MeasureTheory.Lp.cauchySeq_Lp_iff_cauchySeq_eLpNorm
.
theorem
MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[hp : Fact (1 ≤ p)]
(H :
∀ (f : ℕ → α → E),
(∀ (n : ℕ), MemLp (f n) p μ) →
∀ (B : ℕ → ENNReal),
∑' (i : ℕ), B i < ⊤ →
(∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm (f n - f m_1) p μ < B N) →
∃ (f_lim : α → E),
MemLp f_lim p μ ∧ Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0))
:
CompleteSpace ↥(Lp E p μ)
@[deprecated MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm (since := "2025-02-21")]
theorem
MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_ℒp
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[hp : Fact (1 ≤ p)]
(H :
∀ (f : ℕ → α → E),
(∀ (n : ℕ), MemLp (f n) p μ) →
∀ (B : ℕ → ENNReal),
∑' (i : ℕ), B i < ⊤ →
(∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm (f n - f m_1) p μ < B N) →
∃ (f_lim : α → E),
MemLp f_lim p μ ∧ Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0))
:
CompleteSpace ↥(Lp E p μ)
Alias of MeasureTheory.Lp.completeSpace_lp_of_cauchy_complete_eLpNorm
.
Prove that controlled Cauchy sequences of ℒp
have limits in ℒp
#
theorem
MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm'
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{μ : Measure α}
[NormedAddCommGroup E]
[CompleteSpace E]
{f : ℕ → α → E}
{p : ℝ}
(hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ)
(hp1 : 1 ≤ p)
{B : ℕ → ENNReal}
(hB : ∑' (i : ℕ), B i ≠ ⊤)
(h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm' (f n - f m_1) p μ < B N)
:
∀ᵐ (x : α) ∂μ, ∃ (l : E), Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds l)
theorem
MeasureTheory.Lp.ae_tendsto_of_cauchy_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[CompleteSpace E]
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ)
(hp : 1 ≤ p)
{B : ℕ → ENNReal}
(hB : ∑' (i : ℕ), B i ≠ ⊤)
(h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm (f n - f m_1) p μ < B N)
:
∀ᵐ (x : α) ∂μ, ∃ (l : E), Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds l)
theorem
MeasureTheory.Lp.cauchy_tendsto_of_tendsto
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ)
(f_lim : α → E)
{B : ℕ → ENNReal}
(hB : ∑' (i : ℕ), B i ≠ ⊤)
(h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm (f n - f m_1) p μ < B N)
(h_lim : ∀ᵐ (x : α) ∂μ, Filter.Tendsto (fun (n : ℕ) => f n x) Filter.atTop (nhds (f_lim x)))
:
Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
theorem
MeasureTheory.Lp.memLp_of_cauchy_tendsto
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
(hp : 1 ≤ p)
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), MemLp (f n) p μ)
(f_lim : α → E)
(h_lim_meas : AEStronglyMeasurable f_lim μ)
(h_tendsto : Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0))
:
MemLp f_lim p μ
@[deprecated MeasureTheory.Lp.memLp_of_cauchy_tendsto (since := "2025-02-21")]
theorem
MeasureTheory.Lp.memℒp_of_cauchy_tendsto
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
(hp : 1 ≤ p)
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), MemLp (f n) p μ)
(f_lim : α → E)
(h_lim_meas : AEStronglyMeasurable f_lim μ)
(h_tendsto : Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0))
:
MemLp f_lim p μ
Alias of MeasureTheory.Lp.memLp_of_cauchy_tendsto
.
theorem
MeasureTheory.Lp.cauchy_complete_eLpNorm
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[CompleteSpace E]
(hp : 1 ≤ p)
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), MemLp (f n) p μ)
{B : ℕ → ENNReal}
(hB : ∑' (i : ℕ), B i ≠ ⊤)
(h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm (f n - f m_1) p μ < B N)
:
∃ (f_lim : α → E), MemLp f_lim p μ ∧ Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
@[deprecated MeasureTheory.Lp.cauchy_complete_eLpNorm (since := "2025-02-21")]
theorem
MeasureTheory.Lp.cauchy_complete_ℒp
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[CompleteSpace E]
(hp : 1 ≤ p)
{f : ℕ → α → E}
(hf : ∀ (n : ℕ), MemLp (f n) p μ)
{B : ℕ → ENNReal}
(hB : ∑' (i : ℕ), B i ≠ ⊤)
(h_cau : ∀ (N n m_1 : ℕ), N ≤ n → N ≤ m_1 → eLpNorm (f n - f m_1) p μ < B N)
:
∃ (f_lim : α → E), MemLp f_lim p μ ∧ Filter.Tendsto (fun (n : ℕ) => eLpNorm (f n - f_lim) p μ) Filter.atTop (nhds 0)
Alias of MeasureTheory.Lp.cauchy_complete_eLpNorm
.
instance
MeasureTheory.Lp.instCompleteSpace
{α : Type u_1}
{E : Type u_2}
{m : MeasurableSpace α}
{p : ENNReal}
{μ : Measure α}
[NormedAddCommGroup E]
[CompleteSpace E]
[hp : Fact (1 ≤ p)]
:
CompleteSpace ↥(Lp E p μ)
Lp
is complete for 1 ≤ p
.