Documentation

Mathlib.MeasureTheory.Function.SimpleFuncDenseLp

Density of simple functions #

Show that each Lᵖ Borel measurable function can be approximated in Lᵖ norm by a sequence of simple functions.

Main definitions #

Main results #

TODO #

For E finite-dimensional, simple functions α →ₛ E are dense in L^∞ -- prove this.

Notations #

Lp approximation by simple functions #

theorem MeasureTheory.SimpleFunc.nnnorm_approxOn_le {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] [OpensMeasurableSpace E] {f : βE} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] (x : β) (n : Nat) :
LE.le (NNNorm.nnnorm (HSub.hSub (DFunLike.coe (approxOn f hf s y₀ h₀ n) x) (f x))) (NNNorm.nnnorm (HSub.hSub (f x) y₀))
theorem MeasureTheory.SimpleFunc.norm_approxOn_y₀_le {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] [OpensMeasurableSpace E] {f : βE} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] (x : β) (n : Nat) :
LE.le (Norm.norm (HSub.hSub (DFunLike.coe (approxOn f hf s y₀ h₀ n) x) y₀)) (HAdd.hAdd (Norm.norm (HSub.hSub (f x) y₀)) (Norm.norm (HSub.hSub (f x) y₀)))
theorem MeasureTheory.SimpleFunc.norm_approxOn_zero_le {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] [OpensMeasurableSpace E] {f : βE} (hf : Measurable f) {s : Set E} (h₀ : Membership.mem s 0) [TopologicalSpace.SeparableSpace s.Elem] (x : β) (n : Nat) :
LE.le (Norm.norm (DFunLike.coe (approxOn f hf s 0 h₀ n) x)) (HAdd.hAdd (Norm.norm (f x)) (Norm.norm (f x)))
theorem MeasureTheory.SimpleFunc.tendsto_approxOn_Lp_eLpNorm {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] {p : ENNReal} [OpensMeasurableSpace E] {f : βE} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] (hp_ne_top : Ne p Top.top) {μ : Measure β} ( : Filter.Eventually (fun (x : β) => Membership.mem (closure s) (f x)) (ae μ)) (hi : LT.lt (eLpNorm (fun (x : β) => HSub.hSub (f x) y₀) p μ) Top.top) :
Filter.Tendsto (fun (n : Nat) => eLpNorm (HSub.hSub (DFunLike.coe (approxOn f hf s y₀ h₀ n)) f) p μ) Filter.atTop (nhds 0)
theorem MeasureTheory.SimpleFunc.memLp_approxOn {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] {p : ENNReal} [BorelSpace E] {f : βE} {μ : Measure β} (fmeas : Measurable f) (hf : MemLp f p μ) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] (hi₀ : MemLp (fun (x : β) => y₀) p μ) (n : Nat) :
MemLp (DFunLike.coe (approxOn f fmeas s y₀ h₀ n)) p μ
theorem MeasureTheory.MemLp.exists_simpleFunc_eLpNorm_sub_lt {β : Type u_2} [MeasurableSpace β] {p : ENNReal} {E : Type u_7} [NormedAddCommGroup E] {f : βE} {μ : Measure β} (hf : MemLp f p μ) (hp_ne_top : Ne p Top.top) {ε : ENNReal} ( : Ne ε 0) :
Exists fun (g : SimpleFunc β E) => And (LT.lt (eLpNorm (HSub.hSub f (DFunLike.coe g)) p μ) ε) (MemLp (DFunLike.coe g) p μ)

Any function in ℒp can be approximated by a simple function if p < ∞.

L1 approximation by simple functions #

theorem MeasureTheory.SimpleFunc.tendsto_approxOn_L1_enorm {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] [OpensMeasurableSpace E] {f : βE} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] {μ : Measure β} ( : Filter.Eventually (fun (x : β) => Membership.mem (closure s) (f x)) (ae μ)) (hi : HasFiniteIntegral (fun (x : β) => HSub.hSub (f x) y₀) μ) :
Filter.Tendsto (fun (n : Nat) => MeasureTheory.lintegral μ fun (x : β) => ENorm.enorm (HSub.hSub (DFunLike.coe (approxOn f hf s y₀ h₀ n) x) (f x))) Filter.atTop (nhds 0)
@[deprecated MeasureTheory.SimpleFunc.tendsto_approxOn_L1_enorm (since := "2025-01-21")]
theorem MeasureTheory.SimpleFunc.tendsto_approxOn_L1_nnnorm {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] [OpensMeasurableSpace E] {f : βE} (hf : Measurable f) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] {μ : Measure β} ( : Filter.Eventually (fun (x : β) => Membership.mem (closure s) (f x)) (ae μ)) (hi : HasFiniteIntegral (fun (x : β) => HSub.hSub (f x) y₀) μ) :
Filter.Tendsto (fun (n : Nat) => MeasureTheory.lintegral μ fun (x : β) => ENorm.enorm (HSub.hSub (DFunLike.coe (approxOn f hf s y₀ h₀ n) x) (f x))) Filter.atTop (nhds 0)

Alias of MeasureTheory.SimpleFunc.tendsto_approxOn_L1_enorm.

theorem MeasureTheory.SimpleFunc.integrable_approxOn {β : Type u_2} {E : Type u_4} [MeasurableSpace β] [MeasurableSpace E] [NormedAddCommGroup E] [BorelSpace E] {f : βE} {μ : Measure β} (fmeas : Measurable f) (hf : Integrable f μ) {s : Set E} {y₀ : E} (h₀ : Membership.mem s y₀) [TopologicalSpace.SeparableSpace s.Elem] (hi₀ : Integrable (fun (x : β) => y₀) μ) (n : Nat) :
Integrable (DFunLike.coe (approxOn f fmeas s y₀ h₀ n)) μ
@[deprecated MeasureTheory.SimpleFunc.tendsto_approxOn_range_L1_enorm (since := "2025-01-21")]

Alias of MeasureTheory.SimpleFunc.tendsto_approxOn_range_L1_enorm.

Properties of simple functions in Lp spaces #

A simple function f : α →ₛ E into a normed group E verifies, for a measure μ:

theorem MeasureTheory.SimpleFunc.exists_forall_norm_le {α : Type u_1} {F : Type u_5} [MeasurableSpace α] [NormedAddCommGroup F] (f : SimpleFunc α F) :
Exists fun (C : Real) => ∀ (x : α), LE.le (Norm.norm (DFunLike.coe f x)) C
theorem MeasureTheory.SimpleFunc.measure_preimage_lt_top_of_memLp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} {p : ENNReal} (hp_pos : Ne p 0) (hp_ne_top : Ne p Top.top) (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) (y : E) (hy_ne : Ne y 0) :
theorem MeasureTheory.SimpleFunc.memLp_iff {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} {p : ENNReal} {f : SimpleFunc α E} (hp_pos : Ne p 0) (hp_ne_top : Ne p Top.top) :
theorem MeasureTheory.SimpleFunc.memLp_iff_integrable {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} {p : ENNReal} {f : SimpleFunc α E} (hp_pos : Ne p 0) (hp_ne_top : Ne p Top.top) :
theorem MeasureTheory.SimpleFunc.memLp_iff_finMeasSupp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} {p : ENNReal} {f : SimpleFunc α E} (hp_pos : Ne p 0) (hp_ne_top : Ne p Top.top) :
Iff (MemLp (DFunLike.coe f) p μ) (f.FinMeasSupp μ)
theorem MeasureTheory.SimpleFunc.measure_support_lt_top_of_memLp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} {p : ENNReal} (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) (hp_ne_zero : Ne p 0) (hp_ne_top : Ne p Top.top) :
theorem MeasureTheory.SimpleFunc.measure_lt_top_of_memLp_indicator {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} {p : ENNReal} (hp_pos : Ne p 0) (hp_ne_top : Ne p Top.top) {c : E} (hc : Ne c 0) {s : Set α} (hs : MeasurableSet s) (hcs : MemLp (DFunLike.coe (piecewise s hs (const α c) (const α 0))) p μ) :

Construction of the space of Lp simple functions, and its dense embedding into Lp.

def MeasureTheory.Lp.simpleFunc {α : Type u_1} (E : Type u_4) [MeasurableSpace α] [NormedAddCommGroup E] (p : ENNReal) (μ : Measure α) :
AddSubgroup (Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x)

Lp.simpleFunc is a subspace of Lp consisting of equivalence classes of an integrable simple function.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Simple functions in Lp space form a NormedSpace.

    theorem MeasureTheory.Lp.simpleFunc.eq' {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} {f g : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x} :
    Eq f.val.val g.val.valEq f g

    Implementation note: If Lp.simpleFunc E p μ were defined as a 𝕜-submodule of Lp E p μ, then the next few lemmas, putting a normed 𝕜-group structure on Lp.simpleFunc E p μ, would be unnecessary. But instead, Lp.simpleFunc E p μ is defined as an AddSubgroup of Lp E p μ, which does not permit this (but has the advantage of working when E itself is a normed group, i.e. has no scalar action).

    def MeasureTheory.Lp.simpleFunc.smul {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] :
    SMul 𝕜 (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x)

    If E is a normed space, Lp.simpleFunc E p μ is a SMul. Not declared as an instance as it is (as of writing) used only in the construction of the Bochner integral.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem MeasureTheory.Lp.simpleFunc.coe_smul {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] (c : 𝕜) (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
      def MeasureTheory.Lp.simpleFunc.module {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] :
      Module 𝕜 (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x)

      If E is a normed space, Lp.simpleFunc E p μ is a module. Not declared as an instance as it is (as of writing) used only in the construction of the Bochner integral.

      Equations
      Instances For
        theorem MeasureTheory.Lp.simpleFunc.isBoundedSMul {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] [Fact (LE.le 1 p)] :
        IsBoundedSMul 𝕜 (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x)

        If E is a normed space, Lp.simpleFunc E p μ is a normed space. Not declared as an instance as it is (as of writing) used only in the construction of the Bochner integral.

        @[deprecated MeasureTheory.Lp.simpleFunc.isBoundedSMul (since := "2025-03-10")]
        theorem MeasureTheory.Lp.simpleFunc.boundedSMul {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] [Fact (LE.le 1 p)] :
        IsBoundedSMul 𝕜 (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x)

        Alias of MeasureTheory.Lp.simpleFunc.isBoundedSMul.


        If E is a normed space, Lp.simpleFunc E p μ is a normed space. Not declared as an instance as it is (as of writing) used only in the construction of the Bochner integral.

        def MeasureTheory.Lp.simpleFunc.normedSpace {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} {𝕜 : Type u_7} [NormedField 𝕜] [NormedSpace 𝕜 E] [Fact (LE.le 1 p)] :
        NormedSpace 𝕜 (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x)

        If E is a normed space, Lp.simpleFunc E p μ is a normed space. Not declared as an instance as it is (as of writing) used only in the construction of the Bochner integral.

        Equations
        Instances For
          @[reducible, inline]
          abbrev MeasureTheory.Lp.simpleFunc.toLp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) :
          Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x

          Construct the equivalence class [f] of a simple function f satisfying MemLp.

          Equations
          Instances For
            theorem MeasureTheory.Lp.simpleFunc.toLp_eq_toLp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) :
            theorem MeasureTheory.Lp.simpleFunc.toLp_eq_mk {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) :
            theorem MeasureTheory.Lp.simpleFunc.toLp_zero {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} :
            Eq (toLp 0 ) 0
            theorem MeasureTheory.Lp.simpleFunc.toLp_add {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f g : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) (hg : MemLp (DFunLike.coe g) p μ) :
            Eq (toLp (HAdd.hAdd f g) ) (HAdd.hAdd (toLp f hf) (toLp g hg))
            theorem MeasureTheory.Lp.simpleFunc.toLp_neg {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) :
            Eq (toLp (Neg.neg f) ) (Neg.neg (toLp f hf))
            theorem MeasureTheory.Lp.simpleFunc.toLp_sub {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f g : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) (hg : MemLp (DFunLike.coe g) p μ) :
            Eq (toLp (HSub.hSub f g) ) (HSub.hSub (toLp f hf) (toLp g hg))
            theorem MeasureTheory.Lp.simpleFunc.toLp_smul {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) (c : 𝕜) :
            Eq (toLp (HSMul.hSMul c f) ) (HSMul.hSMul c (toLp f hf))
            theorem MeasureTheory.Lp.simpleFunc.norm_toLp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [Fact (LE.le 1 p)] (f : SimpleFunc α E) (hf : MemLp (DFunLike.coe f) p μ) :
            def MeasureTheory.Lp.simpleFunc.toSimpleFunc {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :

            Find a representative of a Lp.simpleFunc.

            Equations
            Instances For
              theorem MeasureTheory.Lp.simpleFunc.measurable {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [MeasurableSpace E] (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :

              (toSimpleFunc f) is measurable.

              theorem MeasureTheory.Lp.simpleFunc.aemeasurable {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [MeasurableSpace E] (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
              theorem MeasureTheory.Lp.simpleFunc.toSimpleFunc_eq_toFun {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
              theorem MeasureTheory.Lp.simpleFunc.memLp {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :

              toSimpleFunc f satisfies the predicate MemLp.

              theorem MeasureTheory.Lp.simpleFunc.toLp_toSimpleFunc {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
              Eq (toLp (toSimpleFunc f) ) f
              theorem MeasureTheory.Lp.simpleFunc.smul_toSimpleFunc {α : Type u_1} {E : Type u_4} {𝕜 : Type u_6} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] (k : 𝕜) (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
              theorem MeasureTheory.Lp.simpleFunc.norm_toSimpleFunc {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [Fact (LE.le 1 p)] (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
              def MeasureTheory.Lp.simpleFunc.indicatorConst {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] (p : ENNReal) {μ : Measure α} {s : Set α} (hs : MeasurableSet s) (hμs : Ne (DFunLike.coe μ s) Top.top) (c : E) :
              Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x

              The characteristic function of a finite-measure measurable set s, as an Lp simple function.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                theorem MeasureTheory.Lp.simpleFunc.coe_indicatorConst {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} {s : Set α} (hs : MeasurableSet s) (hμs : Ne (DFunLike.coe μ s) Top.top) (c : E) :
                Eq (indicatorConst p hs hμs c).val (indicatorConstLp p hs hμs c)
                theorem MeasureTheory.Lp.simpleFunc.induction {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (hp_pos : Ne p 0) (hp_ne_top : Ne p Top.top) {P : (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x)Prop} (indicatorConst : ∀ (c : E) {s : Set α} (hs : MeasurableSet s) (hμs : LT.lt (DFunLike.coe μ s) Top.top), P (indicatorConst p hs c)) (add : ∀ ⦃f g : SimpleFunc α E⦄ (hf : MemLp (DFunLike.coe f) p μ) (hg : MemLp (DFunLike.coe g) p μ), Disjoint (Function.support (DFunLike.coe f)) (Function.support (DFunLike.coe g))P (toLp f hf)P (toLp g hg)P (HAdd.hAdd (toLp f hf) (toLp g hg))) (f : Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) :
                P f

                To prove something for an arbitrary Lp simple function, with 0 < p < ∞, it suffices to show that the property holds for (multiples of) characteristic functions of finite-measure measurable sets and is closed under addition (of functions with disjoint support).

                @[deprecated MeasureTheory.Lp.simpleFunc.isUniformEmbedding (since := "2024-10-01")]

                Alias of MeasureTheory.Lp.simpleFunc.isUniformEmbedding.

                @[deprecated MeasureTheory.Lp.simpleFunc.isUniformInducing (since := "2024-10-05")]

                Alias of MeasureTheory.Lp.simpleFunc.isUniformInducing.

                theorem MeasureTheory.Lp.simpleFunc.dense {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [Fact (LE.le 1 p)] (hp_ne_top : Ne p Top.top) :
                def MeasureTheory.Lp.simpleFunc.coeToLp (α : Type u_1) (E : Type u_4) (𝕜 : Type u_6) [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [Fact (LE.le 1 p)] [NormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] :
                ContinuousLinearMap (RingHom.id 𝕜) (Subtype fun (x : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => Membership.mem (simpleFunc E p μ) x) (Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x)

                The embedding of Lp simple functions into Lp functions, as a continuous linear map.

                Equations
                Instances For
                  theorem MeasureTheory.Lp.simpleFunc.coeFn_le {α : Type u_1} [MeasurableSpace α] {p : ENNReal} {μ : Measure α} {G : Type u_7} [NormedLatticeAddCommGroup G] (f g : Subtype fun (x : Subtype fun (x : AEEqFun α G μ) => Membership.mem (Lp G p μ) x) => Membership.mem (simpleFunc G p μ) x) :
                  theorem MeasureTheory.Lp.simpleFunc.instAddLeftMono {α : Type u_1} [MeasurableSpace α] {p : ENNReal} {μ : Measure α} {G : Type u_7} [NormedLatticeAddCommGroup G] :
                  AddLeftMono (Subtype fun (x : Subtype fun (x : AEEqFun α G μ) => Membership.mem (Lp G p μ) x) => Membership.mem (simpleFunc G p μ) x)
                  theorem MeasureTheory.Lp.simpleFunc.coeFn_nonneg {α : Type u_1} [MeasurableSpace α] {p : ENNReal} {μ : Measure α} {G : Type u_7} [NormedLatticeAddCommGroup G] (f : Subtype fun (x : Subtype fun (x : AEEqFun α G μ) => Membership.mem (Lp G p μ) x) => Membership.mem (simpleFunc G p μ) x) :
                  Iff ((ae μ).EventuallyLE 0 f.val.val.cast) (LE.le 0 f)
                  theorem MeasureTheory.Lp.simpleFunc.exists_simpleFunc_nonneg_ae_eq {α : Type u_1} [MeasurableSpace α] {p : ENNReal} {μ : Measure α} {G : Type u_7} [NormedLatticeAddCommGroup G] {f : Subtype fun (x : Subtype fun (x : AEEqFun α G μ) => Membership.mem (Lp G p μ) x) => Membership.mem (simpleFunc G p μ) x} (hf : LE.le 0 f) :
                  Exists fun (f' : SimpleFunc α G) => And (LE.le 0 f') ((ae μ).EventuallyEq f.val.val.cast (DFunLike.coe f'))
                  def MeasureTheory.Lp.simpleFunc.coeSimpleFuncNonnegToLpNonneg {α : Type u_1} [MeasurableSpace α] (p : ENNReal) (μ : Measure α) (G : Type u_7) [NormedLatticeAddCommGroup G] :
                  (Subtype fun (g : Subtype fun (x : Subtype fun (x : AEEqFun α G μ) => Membership.mem (Lp G p μ) x) => Membership.mem (simpleFunc G p μ) x) => LE.le 0 g)Subtype fun (g : Subtype fun (x : AEEqFun α G μ) => Membership.mem (Lp G p μ) x) => LE.le 0 g

                  Coercion from nonnegative simple functions of Lp to nonnegative functions of Lp.

                  Equations
                  Instances For
                    theorem MeasureTheory.Lp.induction {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [_i : Fact (LE.le 1 p)] (hp_ne_top : Ne p Top.top) (motive : (Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x)Prop) (indicatorConst : ∀ (c : E) {s : Set α} (hs : MeasurableSet s) (hμs : LT.lt (DFunLike.coe μ s) Top.top), motive (simpleFunc.indicatorConst p hs c).val) (add : ∀ ⦃f g : αE⦄ (hf : MemLp f p μ) (hg : MemLp g p μ), Disjoint (Function.support f) (Function.support g)motive (MemLp.toLp f hf)motive (MemLp.toLp g hg)motive (HAdd.hAdd (MemLp.toLp f hf) (MemLp.toLp g hg))) (isClosed : IsClosed (setOf fun (f : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => motive f)) (f : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) :
                    motive f

                    To prove something for an arbitrary Lp function in a second countable Borel normed group, it suffices to show that

                    • the property holds for (multiples of) characteristic functions;
                    • is closed under addition;
                    • the set of functions in Lp for which the property holds is closed.
                    theorem MeasureTheory.MemLp.induction {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} [_i : Fact (LE.le 1 p)] (hp_ne_top : Ne p Top.top) (motive : (αE)Prop) (indicator : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet sLT.lt (DFunLike.coe μ s) Top.topmotive (s.indicator fun (x : α) => c)) (add : ∀ ⦃f g : αE⦄, Disjoint (Function.support f) (Function.support g)MemLp f p μMemLp g p μmotive fmotive gmotive (HAdd.hAdd f g)) (closed : IsClosed (setOf fun (f : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E p μ) x) => motive f.val.cast)) (ae : ∀ ⦃f g : αE⦄, (ae μ).EventuallyEq f gMemLp f p μmotive fmotive g) f : αE :
                    MemLp f p μmotive f

                    To prove something for an arbitrary MemLp function in a second countable Borel normed group, it suffices to show that

                    • the property holds for (multiples of) characteristic functions;
                    • is closed under addition;
                    • the set of functions in the Lᵖ space for which the property holds is closed.
                    • the property is closed under the almost-everywhere equal relation.

                    It is possible to make the hypotheses in the induction steps a bit stronger, and such conditions can be added once we need them (for example in h_add it is only necessary to consider the sum of a simple function with a multiple of a characteristic function and that the intersection of their images is a subset of {0}).

                    theorem MeasureTheory.MemLp.induction_dense {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {p : ENNReal} {μ : Measure α} (hp_ne_top : Ne p Top.top) (P : (αE)Prop) (h0P : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet sLT.lt (DFunLike.coe μ s) Top.top∀ {ε : ENNReal}, Ne ε 0Exists fun (g : αE) => And (LE.le (eLpNorm (HSub.hSub g (s.indicator fun (x : α) => c)) p μ) ε) (P g)) (h1P : ∀ (f g : αE), P fP gP (HAdd.hAdd f g)) (h2P : ∀ (f : αE), P fAEStronglyMeasurable f μ) {f : αE} (hf : MemLp f p μ) {ε : ENNReal} ( : Ne ε 0) :
                    Exists fun (g : αE) => And (LE.le (eLpNorm (HSub.hSub f g) p μ) ε) (P g)

                    If a set of ae strongly measurable functions is stable under addition and approximates characteristic functions in ℒp, then it is dense in ℒp.

                    Lp.simpleFunc is a subspace of Lp consisting of equivalence classes of an integrable simple function.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem MeasureTheory.Integrable.induction {α : Type u_1} {E : Type u_4} [MeasurableSpace α] [NormedAddCommGroup E] {μ : Measure α} (P : (αE)Prop) (h_ind : ∀ (c : E) ⦃s : Set α⦄, MeasurableSet sLT.lt (DFunLike.coe μ s) Top.topP (s.indicator fun (x : α) => c)) (h_add : ∀ ⦃f g : αE⦄, Disjoint (Function.support f) (Function.support g)Integrable f μIntegrable g μP fP gP (HAdd.hAdd f g)) (h_closed : IsClosed (setOf fun (f : Subtype fun (x : AEEqFun α E μ) => Membership.mem (Lp E 1 μ) x) => P f.val.cast)) (h_ae : ∀ ⦃f g : αE⦄, (ae μ).EventuallyEq f gIntegrable f μP fP g) f : αE :
                      Integrable f μP f

                      To prove something for an arbitrary integrable function in a normed group, it suffices to show that

                      • the property holds for (multiples of) characteristic functions;
                      • is closed under addition;
                      • the set of functions in the space for which the property holds is closed.
                      • the property is closed under the almost-everywhere equal relation.

                      It is possible to make the hypotheses in the induction steps a bit stronger, and such conditions can be added once we need them (for example in h_add it is only necessary to consider the sum of a simple function with a multiple of a characteristic function and that the intersection of their images is a subset of {0}).