Documentation

Mathlib.MeasureTheory.Integral.CircleIntegral

Integral over a circle in #

In this file we define ∮ z in C(c, R), f z to be the integral $\oint_{|z-c|=|R|} f(z)\,dz$ and prove some properties of this integral. We give definition and prove most lemmas for a function f : ℂ → E, where E is a complex Banach space. For this reason, some lemmas use, e.g., (z - c)⁻¹ • f z instead of f z / (z - c).

Main definitions #

Main statements #

Notation #

Tags #

integral, circle, Cauchy integral

circleMap, a parametrization of a circle #

theorem circleMap_not_mem_ball (c : ) (R θ : ) :
circleMap c R θMetric.ball c R
theorem circleMap_ne_mem_ball {c : } {R : } {w : } (hw : w Metric.ball c R) (θ : ) :
circleMap c R θ w
@[simp]
theorem range_circleMap (c : ) (R : ) :

The range of circleMap c R is the circle with center c and radius |R|.

@[simp]

The image of (0, 2π] under circleMap c R is the circle with center c and radius |R|.

theorem hasDerivAt_circleMap (c : ) (R θ : ) :

The circleMap is real analytic.

theorem contDiff_circleMap (c : ) (R : ) {n : WithTop ℕ∞} :

The circleMap is continuously differentiable.

@[simp]
theorem deriv_circleMap (c : ) (R θ : ) :
theorem deriv_circleMap_eq_zero_iff {c : } {R θ : } :
deriv (circleMap c R) θ = 0 R = 0
theorem deriv_circleMap_ne_zero {c : } {R θ : } (hR : R 0) :
deriv (circleMap c R) θ 0
theorem continuous_circleMap_inv {R : } {z w : } (hw : w Metric.ball z R) :
Continuous fun (θ : ) => (circleMap z R θ - w)⁻¹

Integrability of a function on a circle #

def CircleIntegrable {E : Type u_1} [NormedAddCommGroup E] (f : E) (c : ) (R : ) :

We say that a function f : ℂ → E is integrable on the circle with center c and radius R if the function f ∘ circleMap c R is integrable on [0, 2π].

Note that the actual function used in the definition of circleIntegral is (deriv (circleMap c R) θ) • f (circleMap c R θ). Integrability of this function is equivalent to integrability of f ∘ circleMap c R whenever R ≠ 0.

Equations
Instances For
    @[simp]
    theorem circleIntegrable_const {E : Type u_1} [NormedAddCommGroup E] (a : E) (c : ) (R : ) :
    CircleIntegrable (fun (x : ) => a) c R
    theorem CircleIntegrable.add {E : Type u_1} [NormedAddCommGroup E] {f g : E} {c : } {R : } (hf : CircleIntegrable f c R) (hg : CircleIntegrable g c R) :
    theorem CircleIntegrable.neg {E : Type u_1} [NormedAddCommGroup E] {f : E} {c : } {R : } (hf : CircleIntegrable f c R) :
    theorem CircleIntegrable.out {E : Type u_1} [NormedAddCommGroup E] {f : E} {c : } {R : } [NormedSpace E] (hf : CircleIntegrable f c R) :
    IntervalIntegrable (fun (θ : ) => deriv (circleMap c R) θ f (circleMap c R θ)) MeasureTheory.volume 0 (2 * Real.pi)

    The function we actually integrate over [0, 2π] in the definition of circleIntegral is integrable.

    @[simp]
    theorem circleIntegrable_zero_radius {E : Type u_1} [NormedAddCommGroup E] {f : E} {c : } :
    theorem CircleIntegrable.congr_codiscreteWithin {c : } {R : } {f₁ f₂ : } (hf : f₁ =ᶠ[Filter.codiscreteWithin (Metric.sphere c |R|)] f₂) (hf₁ : CircleIntegrable f₁ c R) :

    Circle integrability is invariant when functions change along discrete sets.

    theorem circleIntegrable_congr_codiscreteWithin {c : } {R : } {f₁ f₂ : } (hf : f₁ =ᶠ[Filter.codiscreteWithin (Metric.sphere c |R|)] f₂) :

    Circle integrability is invariant when functions change along discrete sets.

    theorem circleIntegrable_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } (R : ) :
    theorem ContinuousOn.circleIntegrable' {E : Type u_1} [NormedAddCommGroup E] {f : E} {c : } {R : } (hf : ContinuousOn f (Metric.sphere c |R|)) :
    theorem ContinuousOn.circleIntegrable {E : Type u_1} [NormedAddCommGroup E] {f : E} {c : } {R : } (hR : 0 R) (hf : ContinuousOn f (Metric.sphere c R)) :
    @[simp]
    theorem circleIntegrable_sub_zpow_iff {c w : } {R : } {n : } :
    CircleIntegrable (fun (z : ) => (z - w) ^ n) c R R = 0 0 n wMetric.sphere c |R|

    The function fun z ↦ (z - w) ^ n, n : ℤ, is circle integrable on the circle with center c and radius |R| if and only if R = 0 or 0 ≤ n, or w does not belong to this circle.

    @[simp]
    theorem circleIntegrable_sub_inv_iff {c w : } {R : } :
    CircleIntegrable (fun (z : ) => (z - w)⁻¹) c R R = 0 wMetric.sphere c |R|
    def circleIntegral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c : ) (R : ) :
    E

    Definition for $\oint_{|z-c|=R} f(z)\,dz$

    Equations
    Instances For

      ∮ z in C(c, R), f z is the circle integral $\oint_{|z-c|=R} f(z)\,dz$.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Pretty printer defined by notation3 command.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          theorem circleIntegral_def_Icc {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c : ) (R : ) :
          ( (z : ) in C(c, R), f z) = (θ : ) in Set.Icc 0 (2 * Real.pi), deriv (circleMap c R) θ f (circleMap c R θ)
          @[simp]
          theorem circleIntegral.integral_radius_zero {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c : ) :
          ( (z : ) in C(c, 0), f z) = 0
          theorem circleIntegral.integral_congr {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f g : E} {c : } {R : } (hR : 0 R) (h : Set.EqOn f g (Metric.sphere c R)) :
          ( (z : ) in C(c, R), f z) = (z : ) in C(c, R), g z
          theorem circleIntegral.circleIntegral_congr_codiscreteWithin {c : } {R : } {f₁ f₂ : } (hf : f₁ =ᶠ[Filter.codiscreteWithin (Metric.sphere c |R|)] f₂) (hR : R 0) :
          ( (z : ) in C(c, R), f₁ z) = (z : ) in C(c, R), f₂ z

          Circle integrals are invariant when functions change along discrete sets.

          theorem circleIntegral.integral_sub_inv_smul_sub_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c w : ) (R : ) :
          ( (z : ) in C(c, R), (z - w)⁻¹ (z - w) f z) = (z : ) in C(c, R), f z
          theorem circleIntegral.integral_undef {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R : } (hf : ¬CircleIntegrable f c R) :
          ( (z : ) in C(c, R), f z) = 0
          theorem circleIntegral.integral_add {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f g : E} {c : } {R : } (hf : CircleIntegrable f c R) (hg : CircleIntegrable g c R) :
          ( (z : ) in C(c, R), f z + g z) = ( (z : ) in C(c, R), f z) + (z : ) in C(c, R), g z
          theorem circleIntegral.integral_sub {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f g : E} {c : } {R : } (hf : CircleIntegrable f c R) (hg : CircleIntegrable g c R) :
          ( (z : ) in C(c, R), f z - g z) = ( (z : ) in C(c, R), f z) - (z : ) in C(c, R), g z
          theorem circleIntegral.norm_integral_le_of_norm_le_const' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R C : } (hf : zMetric.sphere c |R|, f z C) :
          (z : ) in C(c, R), f z 2 * Real.pi * |R| * C
          theorem circleIntegral.norm_integral_le_of_norm_le_const {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R C : } (hR : 0 R) (hf : zMetric.sphere c R, f z C) :
          (z : ) in C(c, R), f z 2 * Real.pi * R * C
          theorem circleIntegral.norm_two_pi_i_inv_smul_integral_le_of_norm_le_const {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R C : } (hR : 0 R) (hf : zMetric.sphere c R, f z C) :
          (2 * Real.pi * Complex.I)⁻¹ (z : ) in C(c, R), f z R * C
          theorem circleIntegral.norm_integral_lt_of_norm_le_const_of_lt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R C : } (hR : 0 < R) (hc : ContinuousOn f (Metric.sphere c R)) (hf : zMetric.sphere c R, f z C) (hlt : zMetric.sphere c R, f z < C) :
          (z : ) in C(c, R), f z < 2 * Real.pi * R * C

          If f is continuous on the circle |z - c| = R, R > 0, the ‖f z‖ is less than or equal to C : ℝ on this circle, and this norm is strictly less than C at some point z of the circle, then ‖∮ z in C(c, R), f z‖ < 2 * π * R * C.

          @[simp]
          theorem circleIntegral.integral_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {𝕜 : Type u_2} [RCLike 𝕜] [NormedSpace 𝕜 E] [SMulCommClass 𝕜 E] (a : 𝕜) (f : E) (c : ) (R : ) :
          ( (z : ) in C(c, R), a f z) = a (z : ) in C(c, R), f z
          @[simp]
          theorem circleIntegral.integral_smul_const {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] (f : ) (a : E) (c : ) (R : ) :
          ( (z : ) in C(c, R), f z a) = ( (z : ) in C(c, R), f z) a
          @[simp]
          theorem circleIntegral.integral_const_mul (a : ) (f : ) (c : ) (R : ) :
          ( (z : ) in C(c, R), a * f z) = a * (z : ) in C(c, R), f z
          @[simp]
          theorem circleIntegral.integral_sub_center_inv (c : ) {R : } (hR : R 0) :
          ( (z : ) in C(c, R), (z - c)⁻¹) = 2 * Real.pi * Complex.I
          theorem circleIntegral.integral_eq_zero_of_hasDerivWithinAt' {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f f' : E} {c : } {R : } (h : zMetric.sphere c |R|, HasDerivWithinAt f (f' z) (Metric.sphere c |R|) z) :
          ( (z : ) in C(c, R), f' z) = 0

          If f' : ℂ → E is a derivative of a complex differentiable function on the circle Metric.sphere c |R|, then ∮ z in C(c, R), f' z = 0.

          theorem circleIntegral.integral_eq_zero_of_hasDerivWithinAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] [CompleteSpace E] {f f' : E} {c : } {R : } (hR : 0 R) (h : zMetric.sphere c R, HasDerivWithinAt f (f' z) (Metric.sphere c R) z) :
          ( (z : ) in C(c, R), f' z) = 0

          If f' : ℂ → E is a derivative of a complex differentiable function on the circle Metric.sphere c R, then ∮ z in C(c, R), f' z = 0.

          theorem circleIntegral.integral_sub_zpow_of_undef {n : } {c w : } {R : } (hn : n < 0) (hw : w Metric.sphere c |R|) :
          ( (z : ) in C(c, R), (z - w) ^ n) = 0

          If n < 0 and |w - c| = |R|, then (z - w) ^ n is not circle integrable on the circle with center c and radius |R|, so the integral ∮ z in C(c, R), (z - w) ^ n is equal to zero.

          theorem circleIntegral.integral_sub_zpow_of_ne {n : } (hn : n -1) (c w : ) (R : ) :
          ( (z : ) in C(c, R), (z - w) ^ n) = 0

          If n ≠ -1 is an integer number, then the integral of (z - w) ^ n over the circle equals zero.

          The power series that is equal to $\frac{1}{2πi}\sum_{n=0}^{\infty} \oint_{|z-c|=R} \left(\frac{w-c}{z - c}\right)^n \frac{1}{z-c}f(z)\,dz$ at w - c. The coefficients of this power series depend only on f ∘ circleMap c R, and the power series converges to f w if f is differentiable on the closed ball Metric.closedBall c R and w belongs to the corresponding open ball. For any circle integrable function f, this power series converges to the Cauchy integral for f.

          Equations
          Instances For
            theorem cauchyPowerSeries_apply {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c : ) (R : ) (n : ) (w : ) :
            ((cauchyPowerSeries f c R n) fun (x : Fin n) => w) = (2 * Real.pi * Complex.I)⁻¹ (z : ) in C(c, R), (w / (z - c)) ^ n (z - c)⁻¹ f z
            theorem norm_cauchyPowerSeries_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c : ) (R : ) (n : ) :
            theorem le_radius_cauchyPowerSeries {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (f : E) (c : ) (R : NNReal) :
            R (cauchyPowerSeries f c R).radius
            theorem hasSum_two_pi_I_cauchyPowerSeries_integral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R : } {w : } (hf : CircleIntegrable f c R) (hw : w < R) :
            HasSum (fun (n : ) => (z : ) in C(c, R), (w / (z - c)) ^ n (z - c)⁻¹ f z) ( (z : ) in C(c, R), (z - (c + w))⁻¹ f z)

            For any circle integrable function f, the power series cauchyPowerSeries f c R multiplied by 2πI converges to the integral ∮ z in C(c, R), (z - w)⁻¹ • f z on the open disc Metric.ball c R.

            theorem hasSum_cauchyPowerSeries_integral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R : } {w : } (hf : CircleIntegrable f c R) (hw : w < R) :
            HasSum (fun (n : ) => (cauchyPowerSeries f c R n) fun (x : Fin n) => w) ((2 * Real.pi * Complex.I)⁻¹ (z : ) in C(c, R), (z - (c + w))⁻¹ f z)

            For any circle integrable function f, the power series cauchyPowerSeries f c R, R > 0, converges to the Cauchy integral (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z on the open disc Metric.ball c R.

            theorem sum_cauchyPowerSeries_eq_integral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R : } {w : } (hf : CircleIntegrable f c R) (hw : w < R) :
            (cauchyPowerSeries f c R).sum w = (2 * Real.pi * Complex.I)⁻¹ (z : ) in C(c, R), (z - (c + w))⁻¹ f z

            For any circle integrable function f, the power series cauchyPowerSeries f c R, R > 0, converges to the Cauchy integral (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z on the open disc Metric.ball c R.

            theorem hasFPowerSeriesOn_cauchy_integral {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {c : } {R : NNReal} (hf : CircleIntegrable f c R) (hR : 0 < R) :
            HasFPowerSeriesOnBall (fun (w : ) => (2 * Real.pi * Complex.I)⁻¹ (z : ) in C(c, R), (z - w)⁻¹ f z) (cauchyPowerSeries f c R) c R

            For any circle integrable function f, the power series cauchyPowerSeries f c R, R > 0, converges to the Cauchy integral (2 * π * I : ℂ)⁻¹ • ∮ z in C(c, R), (z - w)⁻¹ • f z on the open disc Metric.ball c R.

            theorem circleIntegral.integral_sub_inv_of_mem_ball {c w : } {R : } (hw : w Metric.ball c R) :
            ( (z : ) in C(c, R), (z - w)⁻¹) = 2 * Real.pi * Complex.I

            Integral $\oint_{|z-c|=R} \frac{dz}{z-w} = 2πi$ whenever $|w-c| < R$.