Documentation

Mathlib.MeasureTheory.Integral.CircleTransform

Circle integral transform #

In this file we define the circle integral transform of a function f with complex domain. This is defined as $(2πi)^{-1}\frac{f(x)}{x-w}$ where x moves along a circle. We then prove some basic facts about these functions.

These results are useful for proving that the uniform limit of a sequence of holomorphic functions is holomorphic.

def Complex.circleTransform {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (R : ) (z w : ) (f : E) (θ : ) :
E

Given a function f : ℂ → E, circleTransform R z w f is the function mapping θ to (2 * ↑π * I)⁻¹ • deriv (circleMap z R) θ • ((circleMap z R θ) - w)⁻¹ • f (circleMap z R θ).

If f is differentiable and w is in the interior of the ball, then the integral from 0 to 2 * π of this gives the value f(w).

Equations
Instances For
    def Complex.circleTransformDeriv {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (R : ) (z w : ) (f : E) (θ : ) :
    E

    The derivative of circleTransform w.r.t w.

    Equations
    Instances For
      theorem Complex.circleTransformDeriv_eq {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (R : ) (z w : ) (f : E) :
      Complex.circleTransformDeriv R z w f = fun (θ : ) => (circleMap z R θ - w)⁻¹ Complex.circleTransform R z w f θ
      theorem Complex.integral_circleTransform {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (R : ) (z w : ) (f : E) :
      ∫ (θ : ) in 0 ..2 * Real.pi, Complex.circleTransform R z w f θ = (2 * Real.pi * Complex.I)⁻¹ ∮ (z : ) in C(z, R), (z - w)⁻¹ f z
      theorem Complex.continuous_circleTransform {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {R : } (hR : 0 < R) {f : E} {z w : } (hf : ContinuousOn f (Metric.sphere z R)) (hw : w Metric.ball z R) :
      theorem Complex.continuous_circleTransformDeriv {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {R : } (hR : 0 < R) {f : E} {z w : } (hf : ContinuousOn f (Metric.sphere z R)) (hw : w Metric.ball z R) :

      A useful bound for circle integrals (with complex codomain)

      Equations
      Instances For
        theorem Complex.continuousOn_prod_circle_transform_function {R r : } (hr : r < R) {z : } :
        ContinuousOn (fun (w : × ) => (circleMap z R w.2 - w.1)⁻¹ ^ 2) (Metric.closedBall z r ×ˢ Set.univ)
        theorem Complex.abs_circleTransformBoundingFunction_le {R r : } (hr : r < R) (hr' : 0 r) (z : ) :
        ∃ (x : (Metric.closedBall z r ×ˢ Set.uIcc 0 (2 * Real.pi))), ∀ (y : (Metric.closedBall z r ×ˢ Set.uIcc 0 (2 * Real.pi))), Complex.abs (Complex.circleTransformBoundingFunction R z y) Complex.abs (Complex.circleTransformBoundingFunction R z x)
        theorem Complex.circleTransformDeriv_bound {R : } (hR : 0 < R) {z x : } {f : } (hx : x Metric.ball z R) (hf : ContinuousOn f (Metric.sphere z R)) :
        ∃ (B : ) (ε : ), 0 < ε Metric.ball x ε Metric.ball z R ∀ (t : ), yMetric.ball x ε, Complex.circleTransformDeriv R z y f t B

        The derivative of a circleTransform is locally bounded.