Documentation

Mathlib.MeasureTheory.Integral.Gamma

Integrals involving the Gamma function #

In this file, we collect several integrals over or that evaluate in terms of the Real.Gamma function.

theorem integral_rpow_mul_exp_neg_rpow {p q : } (hp : 0 < p) (hq : -1 < q) :
∫ (x : ) in Set.Ioi 0, x ^ q * Real.exp (-x ^ p) = 1 / p * Real.Gamma ((q + 1) / p)
theorem integral_rpow_mul_exp_neg_mul_rpow {p q b : } (hp : 0 < p) (hq : -1 < q) (hb : 0 < b) :
∫ (x : ) in Set.Ioi 0, x ^ q * Real.exp (-b * x ^ p) = b ^ (-(q + 1) / p) * (1 / p) * Real.Gamma ((q + 1) / p)
theorem integral_exp_neg_rpow {p : } (hp : 0 < p) :
∫ (x : ) in Set.Ioi 0, Real.exp (-x ^ p) = Real.Gamma (1 / p + 1)
theorem integral_exp_neg_mul_rpow {p b : } (hp : 0 < p) (hb : 0 < b) :
∫ (x : ) in Set.Ioi 0, Real.exp (-b * x ^ p) = b ^ (-1 / p) * Real.Gamma (1 / p + 1)
theorem Complex.integral_rpow_mul_exp_neg_rpow {p q : } (hp : 1 p) (hq : -2 < q) :
∫ (x : ), x ^ q * Real.exp (-x ^ p) = 2 * Real.pi / p * Real.Gamma ((q + 2) / p)
theorem Complex.integral_rpow_mul_exp_neg_mul_rpow {p q b : } (hp : 1 p) (hq : -2 < q) (hb : 0 < b) :
∫ (x : ), x ^ q * Real.exp (-b * x ^ p) = 2 * Real.pi / p * b ^ (-(q + 2) / p) * Real.Gamma ((q + 2) / p)
theorem Complex.integral_exp_neg_rpow {p : } (hp : 1 p) :
∫ (x : ), Real.exp (-x ^ p) = Real.pi * Real.Gamma (2 / p + 1)
theorem Complex.integral_exp_neg_mul_rpow {p b : } (hp : 1 p) (hb : 0 < b) :
∫ (x : ), Real.exp (-b * x ^ p) = Real.pi * b ^ (-2 / p) * Real.Gamma (2 / p + 1)