Polar coordinates #
We define polar coordinates, as a partial homeomorphism in ℝ^2
between ℝ^2 - (-∞, 0]
and
(0, +∞) × (-π, π)
. Its inverse is given by (r, θ) ↦ (r cos θ, r sin θ)
.
It satisfies the following change of variables formula (see integral_comp_polarCoord_symm
):
∫ p in polarCoord.target, p.1 • f (polarCoord.symm p) = ∫ p, f p
The polar coordinates partial homeomorphism in ℝ^2
, mapping (r cos θ, r sin θ)
to (r, θ)
.
It is a homeomorphism between ℝ^2 - (-∞, 0]
and (0, +∞) × (-π, π)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
polarCoord_apply
(q : ℝ × ℝ)
:
↑polarCoord q = (√(q.1 ^ 2 + q.2 ^ 2), (Complex.equivRealProd.symm q).arg)
@[simp]
theorem
hasFDerivAt_polarCoord_symm
(p : ℝ × ℝ)
:
HasFDerivAt (↑polarCoord.symm)
(LinearMap.toContinuousLinearMap
((Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
!![Real.cos p.2, -p.1 * Real.sin p.2; Real.sin p.2, p.1 * Real.cos p.2]))
p
theorem
det_fderiv_polarCoord_symm
(p : ℝ × ℝ)
:
(LinearMap.toContinuousLinearMap
((Matrix.toLin (Basis.finTwoProd ℝ) (Basis.finTwoProd ℝ))
!![Real.cos p.2, -p.1 * Real.sin p.2; Real.sin p.2, p.1 * Real.cos p.2])).det = p.1
theorem
integral_comp_polarCoord_symm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(f : ℝ × ℝ → E)
:
∫ (p : ℝ × ℝ) in polarCoord.target, p.1 • f (↑polarCoord.symm p) = ∫ (p : ℝ × ℝ), f p
theorem
lintegral_comp_polarCoord_symm
(f : ℝ × ℝ → ENNReal)
:
∫⁻ (p : ℝ × ℝ) in polarCoord.target, ENNReal.ofReal p.1 • f (↑polarCoord.symm p) = ∫⁻ (p : ℝ × ℝ), f p
The polar coordinates partial homeomorphism in ℂ
, mapping r (cos θ + I * sin θ)
to (r, θ)
.
It is a homeomorphism between ℂ - ℝ≤0
and (0, +∞) × (-π, π)
.
Equations
- Complex.polarCoord = Complex.equivRealProdCLM.toHomeomorph.transPartialHomeomorph polarCoord
Instances For
theorem
Complex.measurableEquivRealProd_symm_polarCoord_symm_apply
(p : ℝ × ℝ)
:
Complex.measurableEquivRealProd.symm (↑polarCoord.symm p) = ↑Complex.polarCoord.symm p
@[deprecated Complex.polarCoord_symm_abs (since := "2024-07-15")]
Alias of Complex.polarCoord_symm_abs
.
theorem
Complex.integral_comp_polarCoord_symm
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
(f : ℂ → E)
:
∫ (p : ℝ × ℝ) in polarCoord.target, p.1 • f (↑Complex.polarCoord.symm p) = ∫ (p : ℂ), f p
theorem
Complex.lintegral_comp_polarCoord_symm
(f : ℂ → ENNReal)
:
∫⁻ (p : ℝ × ℝ) in polarCoord.target, ENNReal.ofReal p.1 • f (↑Complex.polarCoord.symm p) = ∫⁻ (p : ℂ), f p