Documentation

Mathlib.MeasureTheory.Integral.IntervalIntegral.MeanValue

First mean value theorem for interval integrals #

We prove versions of the first mean value theorem for interval integrals.

Main results #

References #

Tags #

mean value theorem, interval integral

theorem exists_eq_const_mul_intervalIntegral_of_ae_nonneg {a b : } {f g : } {μ : MeasureTheory.Measure } (hf : ContinuousOn f (Set.uIcc a b)) (hg : IntervalIntegrable g μ a b) (hg0 : ∀ᵐ (x : ) μ.restrict (Set.uIoc a b), 0 g x) :
cSet.uIcc a b, (x : ) in a..b, f x * g x μ = f c * (x : ) in a..b, g x μ

First mean value theorem for interval integrals (arbitrary measure, a.e. nonnegativity). Let f g : ℝ → ℝ and let μ be a measure on . Assume that f is continuous on uIcc a b, that g is interval integrable on a..b w.r.t. μ, and that g ≥ 0 a.e. on Ι a b w.r.t. μ.restrict (Ι a b). Then ∃ c ∈ uIcc a b, (∫ x in a..b, f x * g x ∂μ) = f c * (∫ x in a..b, g x ∂μ).

theorem exists_eq_const_mul_intervalIntegral_of_nonneg {a b : } {f g : } {μ : MeasureTheory.Measure } (hf : ContinuousOn f (Set.uIcc a b)) (hg : IntervalIntegrable g μ a b) (hg0 : xSet.uIoc a b, 0 g x) :
cSet.uIcc a b, (x : ) in a..b, f x * g x μ = f c * (x : ) in a..b, g x μ

First mean value theorem for interval integrals (arbitrary measure, nonnegativity). Let f g : ℝ → ℝ and let μ be a measure on . Assume that f is continuous on uIcc a b, that g is interval integrable on a..b w.r.t. μ, and that g ≥ 0 on Ι a b. Then ∃ c ∈ uIcc a b, (∫ x in a..b, f x * g x ∂μ) = f c * (∫ x in a..b, g x ∂μ).