First mean value theorem for interval integrals #
We prove versions of the first mean value theorem for interval integrals.
Main results #
exists_eq_const_mul_intervalIntegral_of_ae_nonneg(a.e. nonnegativity ofgons):∃ c ∈ uIcc a b, (∫ x in a..b, f x * g x ∂μ) = f c * (∫ x in a..b, g x ∂μ).exists_eq_const_mul_intervalIntegral_of_nonneg(pointwise nonnegativity ofgons):∃ c ∈ uIcc a b, (∫ x in a..b, f x * g x ∂μ) = f c * (∫ x in a..b, g x ∂μ).
References #
- [V. A. Zorich, Mathematical Analysis I][zorich2016], Thm. 5 (First mean-value theorem for the integral).
- https://proofwiki.org/wiki/Mean_Value_Theorem_for_Integrals/Generalization
Tags #
mean value theorem, interval integral
First mean value theorem for interval integrals (arbitrary measure, a.e. nonnegativity).
Let f g : ℝ → ℝ and let μ be a measure on ℝ. Assume that f is continuous on uIcc a b,
that g is interval integrable on a..b w.r.t. μ, and that g ≥ 0 a.e. on Ι a b w.r.t.
μ.restrict (Ι a b). Then
∃ c ∈ uIcc a b, (∫ x in a..b, f x * g x ∂μ) = f c * (∫ x in a..b, g x ∂μ).
First mean value theorem for interval integrals (arbitrary measure, nonnegativity).
Let f g : ℝ → ℝ and let μ be a measure on ℝ. Assume that f is continuous on uIcc a b,
that g is interval integrable on a..b w.r.t. μ, and that g ≥ 0 on Ι a b. Then
∃ c ∈ uIcc a b, (∫ x in a..b, f x * g x ∂μ) = f c * (∫ x in a..b, g x ∂μ).