Some properties of the interval integral of fun x ↦ slope f x (x + c), given a constant c : ℝ #
This file proves that:
IntervalIntegrable.intervalIntegrable_slope: Iffis interval integrable ona..(b + c)wherea ≤ band0 ≤ c, thenfun x ↦ slope f x (x + c)is interval integrable ona..b.MonotoneOn.intervalIntegrable_slope: Iffis monotone ona..(b + c)wherea ≤ band0 ≤ c, thenfun x ↦ slope f x (x + c)is interval integrable ona..b.MonotoneOn.intervalIntegral_slope_le: Iffis monotone ona..(b + c)wherea ≤ band0 ≤ c, then the interval integral offun x ↦ slope f x (x + c)ona..bis at mostf (b + c) - f a.
Tags #
interval integrable, interval integral, monotone, slope
theorem
IntervalIntegrable.intervalIntegrable_slope
{f : ℝ → ℝ}
{a b c : ℝ}
(hf : IntervalIntegrable f MeasureTheory.volume a (b + c))
(hab : a ≤ b)
(hc : 0 ≤ c)
 :
IntervalIntegrable (fun (x : ℝ) => slope f x (x + c)) MeasureTheory.volume a b
If f is interval integrable on a..(b + c) where a ≤ b and 0 ≤ c, then
fun x ↦ slope f x (x + c) is interval integrable on a..b.
theorem
MonotoneOn.intervalIntegrable_slope
{f : ℝ → ℝ}
{a b c : ℝ}
(hf : MonotoneOn f (Set.Icc a (b + c)))
(hab : a ≤ b)
(hc : 0 ≤ c)
 :
IntervalIntegrable (fun (x : ℝ) => slope f x (x + c)) MeasureTheory.volume a b
If f is monotone on a..(b + c) where a ≤ b and 0 ≤ c, then
fun x ↦ slope f x (x + c) is interval integrable on a..b.
theorem
MonotoneOn.intervalIntegral_slope_le
{f : ℝ → ℝ}
{a b c : ℝ}
(hf : MonotoneOn f (Set.Icc a (b + c)))
(hab : a ≤ b)
(hc : 0 ≤ c)
 :
If f is monotone on a..(b + c) where a ≤ b and 0 ≤ c, then the interval integral of
fun x ↦ slope f x (x + c) on a..b is at most f (b + c) - f a.