Documentation

Mathlib.MeasureTheory.Integral.IntervalIntegral.Slope

Some properties of the interval integral of fun x ↦ slope f x (x + c), given a constant c : ℝ #

This file proves that:

Tags #

interval integrable, interval integral, monotone, slope

theorem IntervalIntegrable.intervalIntegrable_slope {f : } {a b c : } (hf : IntervalIntegrable f MeasureTheory.volume a (b + c)) (hab : a b) (hc : 0 c) :
IntervalIntegrable (fun (x : ) => slope f x (x + c)) MeasureTheory.volume a b

If f is interval integrable on a..(b + c) where a ≤ b and 0 ≤ c, then fun x ↦ slope f x (x + c) is interval integrable on a..b.

theorem MonotoneOn.intervalIntegrable_slope {f : } {a b c : } (hf : MonotoneOn f (Set.Icc a (b + c))) (hab : a b) (hc : 0 c) :
IntervalIntegrable (fun (x : ) => slope f x (x + c)) MeasureTheory.volume a b

If f is monotone on a..(b + c) where a ≤ b and 0 ≤ c, then fun x ↦ slope f x (x + c) is interval integrable on a..b.

theorem MonotoneOn.intervalIntegral_slope_le {f : } {a b c : } (hf : MonotoneOn f (Set.Icc a (b + c))) (hab : a b) (hc : 0 c) :
(x : ) in a..b, slope f x (x + c) f (b + c) - f a

If f is monotone on a..(b + c) where a ≤ b and 0 ≤ c, then the interval integral of fun x ↦ slope f x (x + c) on a..b is at most f (b + c) - f a.