Documentation

Mathlib.MeasureTheory.Measure.Content

Contents #

In this file we work with contents. A content λ is a function from a certain class of subsets (such as the compact subsets) to ℝ≥0 that is

We show that:

We define bundled contents as Content. In this file we only work on contents on compact sets, and inner contents on open sets, and both contents and inner contents map into the extended nonnegative reals. However, in other applications other choices can be made, and it is not a priori clear what the best interface should be.

Main definitions #

For μ : Content G, we define

These definitions are given for spaces which are R₁. The resulting measure μ.measure is always outer regular by design. When the space is locally compact, μ.measure is also regular.

References #

A content is an additive function on compact sets taking values in ℝ≥0. It is a device from which one can define a measure.

Instances For
    Equations
    @[simp]
    theorem MeasureTheory.Content.mk_apply {G : Type w} [TopologicalSpace G] (toFun : TopologicalSpace.Compacts GNNReal) (mono' : ∀ (K₁ K₂ : TopologicalSpace.Compacts G), K₁ K₂toFun K₁ toFun K₂) (sup_disjoint' : ∀ (K₁ K₂ : TopologicalSpace.Compacts G), Disjoint K₁ K₂IsClosed K₁IsClosed K₂toFun (K₁ K₂) = toFun K₁ + toFun K₂) (sup_le' : ∀ (K₁ K₂ : TopologicalSpace.Compacts G), toFun (K₁ K₂) toFun K₁ + toFun K₂) (K : TopologicalSpace.Compacts G) :
    { toFun := toFun, mono' := mono', sup_disjoint' := sup_disjoint', sup_le' := sup_le' } K = (toFun K)
    @[deprecated MeasureTheory.Content.toFun_eq_toNNReal_apply (since := "2025-02-11")]
    theorem MeasureTheory.Content.mono {G : Type w} [TopologicalSpace G] (μ : Content G) (K₁ K₂ : TopologicalSpace.Compacts G) (h : K₁ K₂) :
    μ K₁ μ K₂
    theorem MeasureTheory.Content.sup_disjoint {G : Type w} [TopologicalSpace G] (μ : Content G) (K₁ K₂ : TopologicalSpace.Compacts G) (h : Disjoint K₁ K₂) (h₁ : IsClosed K₁) (h₂ : IsClosed K₂) :
    μ (K₁ K₂) = μ K₁ + μ K₂
    theorem MeasureTheory.Content.sup_le {G : Type w} [TopologicalSpace G] (μ : Content G) (K₁ K₂ : TopologicalSpace.Compacts G) :
    μ (K₁ K₂) μ K₁ + μ K₂

    Constructing the inner content of a content. From a content defined on the compact sets, we obtain a function defined on all open sets, by taking the supremum of the content of all compact subsets.

    Equations
    Instances For
      theorem MeasureTheory.Content.innerContent_of_isCompact {G : Type w} [TopologicalSpace G] (μ : Content G) {K : Set G} (h1K : IsCompact K) (h2K : IsOpen K) :
      μ.innerContent { carrier := K, is_open' := h2K } = μ { carrier := K, isCompact' := h1K }
      theorem MeasureTheory.Content.innerContent_mono {G : Type w} [TopologicalSpace G] (μ : Content G) ⦃U V : Set G (hU : IsOpen U) (hV : IsOpen V) (h2 : U V) :
      μ.innerContent { carrier := U, is_open' := hU } μ.innerContent { carrier := V, is_open' := hV }

      This is "unbundled", because that is required for the API of inducedOuterMeasure.

      theorem MeasureTheory.Content.innerContent_exists_compact {G : Type w} [TopologicalSpace G] (μ : Content G) {U : TopologicalSpace.Opens G} (hU : μ.innerContent U ) {ε : NNReal} (hε : ε 0) :
      ∃ (K : TopologicalSpace.Compacts G), K U μ.innerContent U μ K + ε

      The inner content of a supremum of opens is at most the sum of the individual inner contents.

      theorem MeasureTheory.Content.innerContent_iUnion_nat {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] ⦃U : Set G (hU : ∀ (i : ), IsOpen (U i)) :
      μ.innerContent { carrier := ⋃ (i : ), U i, is_open' := } ∑' (i : ), μ.innerContent { carrier := U i, is_open' := }

      The inner content of a union of sets is at most the sum of the individual inner contents. This is the "unbundled" version of innerContent_iSup_nat. It is required for the API of inducedOuterMeasure.

      theorem MeasureTheory.Content.innerContent_pos_of_is_mul_left_invariant {G : Type w} [TopologicalSpace G] (μ : Content G) [Group G] [IsTopologicalGroup G] (h3 : ∀ (g : G) {K : TopologicalSpace.Compacts G}, μ (TopologicalSpace.Compacts.map (fun (b : G) => g * b) K) = μ K) (K : TopologicalSpace.Compacts G) (hK : μ K 0) (U : TopologicalSpace.Opens G) (hU : (↑U).Nonempty) :
      theorem MeasureTheory.Content.innerContent_pos_of_is_add_left_invariant {G : Type w} [TopologicalSpace G] (μ : Content G) [AddGroup G] [IsTopologicalAddGroup G] (h3 : ∀ (g : G) {K : TopologicalSpace.Compacts G}, μ (TopologicalSpace.Compacts.map (fun (b : G) => g + b) K) = μ K) (K : TopologicalSpace.Compacts G) (hK : μ K 0) (U : TopologicalSpace.Opens G) (hU : (↑U).Nonempty) :
      theorem MeasureTheory.Content.innerContent_mono' {G : Type w} [TopologicalSpace G] (μ : Content G) ⦃U V : Set G (hU : IsOpen U) (hV : IsOpen V) (h2 : U V) :
      μ.innerContent { carrier := U, is_open' := hU } μ.innerContent { carrier := V, is_open' := hV }

      Extending a content on compact sets to an outer measure on all sets.

      Equations
      Instances For
        theorem MeasureTheory.Content.outerMeasure_of_isOpen {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] (U : Set G) (hU : IsOpen U) :
        μ.outerMeasure U = μ.innerContent { carrier := U, is_open' := hU }
        theorem MeasureTheory.Content.outerMeasure_eq_iInf {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] (A : Set G) :
        μ.outerMeasure A = ⨅ (U : Set G), ⨅ (hU : IsOpen U), ⨅ (_ : A U), μ.innerContent { carrier := U, is_open' := hU }
        theorem MeasureTheory.Content.outerMeasure_exists_compact {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] {U : TopologicalSpace.Opens G} (hU : μ.outerMeasure U ) {ε : NNReal} (hε : ε 0) :
        ∃ (K : TopologicalSpace.Compacts G), K U μ.outerMeasure U μ.outerMeasure K + ε
        theorem MeasureTheory.Content.outerMeasure_exists_open {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] {A : Set G} (hA : μ.outerMeasure A ) {ε : NNReal} (hε : ε 0) :
        ∃ (U : TopologicalSpace.Opens G), A U μ.outerMeasure U μ.outerMeasure A + ε
        theorem MeasureTheory.Content.outerMeasure_preimage {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] (f : G ≃ₜ G) (h : ∀ ⦃K : TopologicalSpace.Compacts G⦄, μ (TopologicalSpace.Compacts.map f K) = μ K) (A : Set G) :
        theorem MeasureTheory.Content.is_mul_left_invariant_outerMeasure {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] [Group G] [IsTopologicalGroup G] (h : ∀ (g : G) {K : TopologicalSpace.Compacts G}, μ (TopologicalSpace.Compacts.map (fun (b : G) => g * b) K) = μ K) (g : G) (A : Set G) :
        μ.outerMeasure ((fun (x : G) => g * x) ⁻¹' A) = μ.outerMeasure A
        theorem MeasureTheory.Content.is_add_left_invariant_outerMeasure {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] [AddGroup G] [IsTopologicalAddGroup G] (h : ∀ (g : G) {K : TopologicalSpace.Compacts G}, μ (TopologicalSpace.Compacts.map (fun (b : G) => g + b) K) = μ K) (g : G) (A : Set G) :
        μ.outerMeasure ((fun (x : G) => g + x) ⁻¹' A) = μ.outerMeasure A
        theorem MeasureTheory.Content.outerMeasure_pos_of_is_mul_left_invariant {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] [Group G] [IsTopologicalGroup G] (h3 : ∀ (g : G) {K : TopologicalSpace.Compacts G}, μ (TopologicalSpace.Compacts.map (fun (b : G) => g * b) K) = μ K) (K : TopologicalSpace.Compacts G) (hK : μ K 0) {U : Set G} (h1U : IsOpen U) (h2U : U.Nonempty) :
        theorem MeasureTheory.Content.outerMeasure_pos_of_is_add_left_invariant {G : Type w} [TopologicalSpace G] (μ : Content G) [R1Space G] [AddGroup G] [IsTopologicalAddGroup G] (h3 : ∀ (g : G) {K : TopologicalSpace.Compacts G}, μ (TopologicalSpace.Compacts.map (fun (b : G) => g + b) K) = μ K) (K : TopologicalSpace.Compacts G) (hK : μ K 0) {U : Set G} (h1U : IsOpen U) (h2U : U.Nonempty) :

        For the outer measure coming from a content, all Borel sets are measurable.

        The measure induced by the outer measure coming from a content, on the Borel sigma-algebra.

        Equations
        Instances For

          In a locally compact space, any measure constructed from a content is regular.

          A content μ is called regular if for every compact set K, μ(K) = inf {μ(K') : K ⊂ int K' ⊂ K'}. See Paul Halmos (1950), Measure Theory, §54.

          Equations
          Instances For

            If μ is a regular content, then the measure induced by μ will agree with μ on compact sets.