The Caratheodory σ-algebra of an outer measure #
Given an outer measure m
, the Carathéodory-measurable sets are the sets s
such that
for all sets t
we have m t = m (t ∩ s) + m (t \ s)
. This forms a measurable space.
Main definitions and statements #
MeasureTheory.OuterMeasure.caratheodory
is the Carathéodory-measurable space of an outer measure.
References #
- https://en.wikipedia.org/wiki/Outer_measure
- https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_criterion
Tags #
Carathéodory-measurable, Carathéodory's criterion
A set s
is Carathéodory-measurable for an outer measure m
if for all sets t
we have
m t = m (t ∩ s) + m (t \ s)
.
Instances For
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iff_le'
{α : Type u}
(m : OuterMeasure α)
{s : Set α}
:
@[simp]
theorem
MeasureTheory.OuterMeasure.isCaratheodory_compl
{α : Type u}
(m : OuterMeasure α)
{s₁ : Set α}
:
m.IsCaratheodory s₁ → m.IsCaratheodory s₁ᶜ
@[simp]
theorem
MeasureTheory.OuterMeasure.isCaratheodory_compl_iff
{α : Type u}
(m : OuterMeasure α)
{s : Set α}
:
theorem
MeasureTheory.OuterMeasure.isCaratheodory_union
{α : Type u}
(m : OuterMeasure α)
{s₁ s₂ : Set α}
(h₁ : m.IsCaratheodory s₁)
(h₂ : m.IsCaratheodory s₂)
:
m.IsCaratheodory (s₁ ∪ s₂)
theorem
MeasureTheory.OuterMeasure.IsCaratheodory.biUnion_of_finite
{α : Type u}
{m : OuterMeasure α}
{ι : Type u_1}
{s : ι → Set α}
{t : Set ι}
(ht : t.Finite)
(h : ∀ i ∈ t, m.IsCaratheodory (s i))
:
m.IsCaratheodory (⋃ i ∈ t, s i)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iUnion_lt
{α : Type u}
(m : OuterMeasure α)
{s : ℕ → Set α}
{n : ℕ}
:
(∀ i < n, m.IsCaratheodory (s i)) → m.IsCaratheodory (⋃ (i : ℕ), ⋃ (_ : i < n), s i)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_inter
{α : Type u}
(m : OuterMeasure α)
{s₁ s₂ : Set α}
(h₁ : m.IsCaratheodory s₁)
(h₂ : m.IsCaratheodory s₂)
:
m.IsCaratheodory (s₁ ∩ s₂)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_diff
{α : Type u}
(m : OuterMeasure α)
{s₁ s₂ : Set α}
(h₁ : m.IsCaratheodory s₁)
(h₂ : m.IsCaratheodory s₂)
:
m.IsCaratheodory (s₁ \ s₂)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_partialSups
{α : Type u}
(m : OuterMeasure α)
{ι : Type u_1}
[PartialOrder ι]
[LocallyFiniteOrderBot ι]
{s : ι → Set α}
(h : ∀ (i : ι), m.IsCaratheodory (s i))
(i : ι)
:
m.IsCaratheodory ((partialSups s) i)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_disjointed
{α : Type u}
(m : OuterMeasure α)
{ι : Type u_1}
[PartialOrder ι]
[LocallyFiniteOrderBot ι]
{s : ι → Set α}
(h : ∀ (i : ι), m.IsCaratheodory (s i))
(i : ι)
:
m.IsCaratheodory (disjointed s i)
theorem
MeasureTheory.OuterMeasure.isCaratheodory_sum
{α : Type u}
(m : OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), m.IsCaratheodory (s i))
(hd : Pairwise (Function.onFun Disjoint s))
{t : Set α}
{n : ℕ}
:
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iUnion_of_disjoint
{α : Type u}
(m : OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), m.IsCaratheodory (s i))
(hd : Pairwise (Function.onFun Disjoint s))
:
m.IsCaratheodory (⋃ (i : ℕ), s i)
Use isCaratheodory_iUnion
instead, which does not require the disjoint assumption.
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iUnion
{α : Type u}
(m : OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), m.IsCaratheodory (s i))
:
m.IsCaratheodory (⋃ (i : ℕ), s i)
theorem
MeasureTheory.OuterMeasure.f_iUnion
{α : Type u}
(m : OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), m.IsCaratheodory (s i))
(hd : Pairwise (Function.onFun Disjoint s))
:
The Carathéodory-measurable sets for an outer measure m
form a Dynkin system.
Equations
- m.caratheodoryDynkin = { Has := m.IsCaratheodory, has_empty := ⋯, has_compl := ⋯, has_iUnion_nat := ⋯ }
Instances For
Given an outer measure μ
, the Carathéodory-measurable space is
defined such that s
is measurable if ∀t, μ t = μ (t ∩ s) + μ (t \ s)
.
Equations
Instances For
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iff
{α : Type u}
(m : OuterMeasure α)
{s : Set α}
:
theorem
MeasureTheory.OuterMeasure.isCaratheodory_iff_le
{α : Type u}
(m : OuterMeasure α)
{s : Set α}
:
theorem
MeasureTheory.OuterMeasure.iUnion_eq_of_caratheodory
{α : Type u}
(m : OuterMeasure α)
{s : ℕ → Set α}
(h : ∀ (i : ℕ), MeasurableSet (s i))
(hd : Pairwise (Function.onFun Disjoint s))
:
@[simp]
theorem
MeasureTheory.OuterMeasure.le_sum_caratheodory
{α : Type u_1}
{ι : Type u_2}
(m : ι → OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.le_smul_caratheodory
{α : Type u_1}
(a : ENNReal)
(m : OuterMeasure α)
:
@[simp]