Operations on outer measures #
In this file we define algebraic operations (addition, scalar multiplication)
on the type of outer measures on a type.
We also show that outer measures on a type α
form a complete lattice.
References #
Tags #
outer measure
Equations
- MeasureTheory.OuterMeasure.instZero = { zero := { measureOf := fun (x : Set α) => 0, empty := ⋯, mono := ⋯, iUnion_nat := ⋯ } }
Equations
- MeasureTheory.OuterMeasure.instInhabited = { default := 0 }
Equations
- MeasureTheory.OuterMeasure.instAdd = { add := fun (m₁ m₂ : MeasureTheory.OuterMeasure α) => { measureOf := fun (s : Set α) => m₁ s + m₂ s, empty := ⋯, mono := ⋯, iUnion_nat := ⋯ } }
@[simp]
instance
MeasureTheory.OuterMeasure.instSMul
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
SMul R (OuterMeasure α)
Equations
- MeasureTheory.OuterMeasure.instSMul = { smul := fun (c : R) (m : MeasureTheory.OuterMeasure α) => { measureOf := fun (s : Set α) => c • m s, empty := ⋯, mono := ⋯, iUnion_nat := ⋯ } }
@[simp]
theorem
MeasureTheory.OuterMeasure.coe_smul
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
(c : R)
(m : OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.smul_apply
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
(c : R)
(m : OuterMeasure α)
(s : Set α)
:
instance
MeasureTheory.OuterMeasure.instSMulCommClass
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
{R' : Type u_4}
[SMul R' ENNReal]
[IsScalarTower R' ENNReal ENNReal]
[SMulCommClass R R' ENNReal]
:
SMulCommClass R R' (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instIsScalarTower
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
{R' : Type u_4}
[SMul R' ENNReal]
[IsScalarTower R' ENNReal ENNReal]
[SMul R R']
[IsScalarTower R R' ENNReal]
:
IsScalarTower R R' (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instIsCentralScalar
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
[SMul Rᵐᵒᵖ ENNReal]
[IsCentralScalar R ENNReal]
:
IsCentralScalar R (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instMulAction
{α : Type u_1}
{R : Type u_3}
[Monoid R]
[MulAction R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
MulAction R (OuterMeasure α)
Equations
- MeasureTheory.OuterMeasure.instMulAction = Function.Injective.mulAction (fun (μ : MeasureTheory.OuterMeasure α) (s : Set α) => μ s) ⋯ ⋯
Equations
- MeasureTheory.OuterMeasure.addCommMonoid = Function.Injective.addCommMonoid (let_fun this := fun (μ : MeasureTheory.OuterMeasure α) (s : Set α) => μ s; this) ⋯ ⋯ ⋯ ⋯
(⇑)
as an AddMonoidHom
.
Equations
- MeasureTheory.OuterMeasure.coeFnAddMonoidHom = { toFun := DFunLike.coe, map_zero' := ⋯, map_add' := ⋯ }
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.coeFnAddMonoidHom_apply
{α : Type u_1}
(a✝ : OuterMeasure α)
(a : Set α)
:
coeFnAddMonoidHom a✝ a = a✝ a
instance
MeasureTheory.OuterMeasure.instDistribMulAction
{α : Type u_1}
{R : Type u_3}
[Monoid R]
[DistribMulAction R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
DistribMulAction R (OuterMeasure α)
instance
MeasureTheory.OuterMeasure.instModule
{α : Type u_1}
{R : Type u_3}
[Semiring R]
[Module R ENNReal]
[IsScalarTower R ENNReal ENNReal]
:
Module R (OuterMeasure α)
Equations
- MeasureTheory.OuterMeasure.instBot = { bot := 0 }
Equations
Equations
- One or more equations did not get rendered due to their size.
Equations
@[simp]
theorem
MeasureTheory.OuterMeasure.sSup_apply
{α : Type u_1}
(ms : Set (OuterMeasure α))
(s : Set α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.iSup_apply
{α : Type u_1}
{ι : Sort u_3}
(f : ι → OuterMeasure α)
(s : Set α)
:
(⨆ (i : ι), f i) s = ⨆ (i : ι), (f i) s
theorem
MeasureTheory.OuterMeasure.coe_iSup
{α : Type u_1}
{ι : Sort u_3}
(f : ι → OuterMeasure α)
:
⇑(⨆ (i : ι), f i) = ⨆ (i : ι), ⇑(f i)
@[simp]
theorem
MeasureTheory.OuterMeasure.smul_iSup
{α : Type u_1}
{R : Type u_3}
[SMul R ENNReal]
[IsScalarTower R ENNReal ENNReal]
{ι : Sort u_4}
(f : ι → OuterMeasure α)
(c : R)
:
theorem
MeasureTheory.OuterMeasure.mono''
{α : Type u_1}
{m₁ m₂ : OuterMeasure α}
{s₁ s₂ : Set α}
(hm : m₁ ≤ m₂)
(hs : s₁ ⊆ s₂)
:
m₁ s₁ ≤ m₂ s₂
The pushforward of m
along f
. The outer measure on s
is defined to be m (f ⁻¹' s)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.map_apply
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure α)
(s : Set β)
:
@[simp]
@[simp]
theorem
MeasureTheory.OuterMeasure.map_iSup
{α : Type u_1}
{β : Type u_3}
{ι : Sort u_4}
(f : α → β)
(m : ι → OuterMeasure α)
:
Equations
- One or more equations did not get rendered due to their size.
The dirac outer measure.
Equations
- MeasureTheory.OuterMeasure.dirac a = { measureOf := fun (s : Set α) => s.indicator (fun (x : α) => 1) a, empty := ⋯, mono := ⋯, iUnion_nat := ⋯ }
Instances For
The sum of an (arbitrary) collection of outer measures.
Equations
- MeasureTheory.OuterMeasure.sum f = { measureOf := fun (s : Set α) => ∑' (i : ι), (f i) s, empty := ⋯, mono := ⋯, iUnion_nat := ⋯ }
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.sum_apply
{α : Type u_1}
{ι : Type u_3}
(f : ι → OuterMeasure α)
(s : Set α)
:
Pullback of an OuterMeasure
: comap f μ s = μ (f '' s)
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.comap_apply
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure β)
(s : Set α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.comap_iSup
{α : Type u_1}
{β : Type u_3}
{ι : Sort u_4}
(f : α → β)
(m : ι → OuterMeasure β)
:
Restrict an OuterMeasure
to a set.
Equations
Instances For
@[simp]
theorem
MeasureTheory.OuterMeasure.restrict_apply
{α : Type u_1}
(s t : Set α)
(m : OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.restrict_mono
{α : Type u_1}
{s t : Set α}
(h : s ⊆ t)
{m m' : OuterMeasure α}
(hm : m ≤ m')
:
@[simp]
@[simp]
@[simp]
theorem
MeasureTheory.OuterMeasure.restrict_iSup
{α : Type u_1}
{ι : Sort u_3}
(s : Set α)
(m : ι → OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.map_comap
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure β)
:
theorem
MeasureTheory.OuterMeasure.map_comap_le
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure β)
:
theorem
MeasureTheory.OuterMeasure.restrict_le_self
{α : Type u_1}
(m : OuterMeasure α)
(s : Set α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.map_le_restrict_range
{α : Type u_1}
{β : Type u_3}
{ma : OuterMeasure α}
{mb : OuterMeasure β}
{f : α → β}
:
theorem
MeasureTheory.OuterMeasure.map_comap_of_surjective
{α : Type u_1}
{β : Type u_3}
{f : α → β}
(hf : Function.Surjective f)
(m : OuterMeasure β)
:
theorem
MeasureTheory.OuterMeasure.le_comap_map
{α : Type u_1}
{β : Type u_3}
(f : α → β)
(m : OuterMeasure α)
:
theorem
MeasureTheory.OuterMeasure.comap_map
{α : Type u_1}
{β : Type u_3}
{f : α → β}
(hf : Function.Injective f)
(m : OuterMeasure α)
:
@[simp]
theorem
MeasureTheory.OuterMeasure.map_top_of_surjective
{α : Type u_1}
{β : Type u_2}
(f : α → β)
(hf : Function.Surjective f)
: