Documentation

Mathlib.MeasureTheory.OuterMeasure.Operations

Operations on outer measures #

In this file we define algebraic operations (addition, scalar multiplication) on the type of outer measures on a type. We also show that outer measures on a type α form a complete lattice.

References #

Tags #

outer measure

Equations
@[simp]
theorem MeasureTheory.OuterMeasure.coe_zero {α : Type u_1} :
0 = 0
Equations
@[simp]
theorem MeasureTheory.OuterMeasure.coe_add {α : Type u_1} (m₁ m₂ : OuterMeasure α) :
(m₁ + m₂) = m₁ + m₂
theorem MeasureTheory.OuterMeasure.add_apply {α : Type u_1} (m₁ m₂ : OuterMeasure α) (s : Set α) :
(m₁ + m₂) s = m₁ s + m₂ s
Equations
@[simp]
theorem MeasureTheory.OuterMeasure.coe_smul {α : Type u_1} {R : Type u_3} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (c : R) (m : OuterMeasure α) :
(c m) = c m
theorem MeasureTheory.OuterMeasure.smul_apply {α : Type u_1} {R : Type u_3} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (c : R) (m : OuterMeasure α) (s : Set α) :
(c m) s = c m s

(⇑) as an AddMonoidHom.

Equations
Instances For
    @[simp]
    theorem MeasureTheory.OuterMeasure.coeFnAddMonoidHom_apply {α : Type u_1} (a✝ : OuterMeasure α) (a : Set α) :
    coeFnAddMonoidHom a✝ a = a✝ a
    @[simp]
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem MeasureTheory.OuterMeasure.sSup_apply {α : Type u_1} (ms : Set (OuterMeasure α)) (s : Set α) :
    (sSup ms) s = mms, m s
    @[simp]
    theorem MeasureTheory.OuterMeasure.iSup_apply {α : Type u_1} {ι : Sort u_3} (f : ιOuterMeasure α) (s : Set α) :
    (⨆ (i : ι), f i) s = ⨆ (i : ι), (f i) s
    theorem MeasureTheory.OuterMeasure.coe_iSup {α : Type u_1} {ι : Sort u_3} (f : ιOuterMeasure α) :
    (⨆ (i : ι), f i) = ⨆ (i : ι), (f i)
    @[simp]
    theorem MeasureTheory.OuterMeasure.sup_apply {α : Type u_1} (m₁ m₂ : OuterMeasure α) (s : Set α) :
    (m₁ m₂) s = m₁ s m₂ s
    theorem MeasureTheory.OuterMeasure.smul_iSup {α : Type u_1} {R : Type u_3} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] {ι : Sort u_4} (f : ιOuterMeasure α) (c : R) :
    c ⨆ (i : ι), f i = ⨆ (i : ι), c f i
    theorem MeasureTheory.OuterMeasure.mono'' {α : Type u_1} {m₁ m₂ : OuterMeasure α} {s₁ s₂ : Set α} (hm : m₁ m₂) (hs : s₁ s₂) :
    m₁ s₁ m₂ s₂
    def MeasureTheory.OuterMeasure.map {α : Type u_1} {β : Type u_3} (f : αβ) :

    The pushforward of m along f. The outer measure on s is defined to be m (f ⁻¹' s).

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem MeasureTheory.OuterMeasure.map_apply {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure α) (s : Set β) :
      ((map f) m) s = m (f ⁻¹' s)
      @[simp]
      theorem MeasureTheory.OuterMeasure.map_id {α : Type u_1} (m : OuterMeasure α) :
      (map id) m = m
      @[simp]
      theorem MeasureTheory.OuterMeasure.map_map {α : Type u_1} {β : Type u_3} {γ : Type u_4} (f : αβ) (g : βγ) (m : OuterMeasure α) :
      (map g) ((map f) m) = (map (g f)) m
      theorem MeasureTheory.OuterMeasure.map_mono {α : Type u_1} {β : Type u_3} (f : αβ) :
      Monotone (map f)
      @[simp]
      theorem MeasureTheory.OuterMeasure.map_sup {α : Type u_1} {β : Type u_3} (f : αβ) (m m' : OuterMeasure α) :
      (map f) (m m') = (map f) m (map f) m'
      @[simp]
      theorem MeasureTheory.OuterMeasure.map_iSup {α : Type u_1} {β : Type u_3} {ι : Sort u_4} (f : αβ) (m : ιOuterMeasure α) :
      (map f) (⨆ (i : ι), m i) = ⨆ (i : ι), (map f) (m i)
      Equations
      • One or more equations did not get rendered due to their size.

      The dirac outer measure.

      Equations
      Instances For
        @[simp]
        theorem MeasureTheory.OuterMeasure.dirac_apply {α : Type u_1} (a : α) (s : Set α) :
        (dirac a) s = s.indicator (fun (x : α) => 1) a
        def MeasureTheory.OuterMeasure.sum {α : Type u_1} {ι : Type u_3} (f : ιOuterMeasure α) :

        The sum of an (arbitrary) collection of outer measures.

        Equations
        Instances For
          @[simp]
          theorem MeasureTheory.OuterMeasure.sum_apply {α : Type u_1} {ι : Type u_3} (f : ιOuterMeasure α) (s : Set α) :
          (sum f) s = ∑' (i : ι), (f i) s
          theorem MeasureTheory.OuterMeasure.smul_dirac_apply {α : Type u_1} (a : ENNReal) (b : α) (s : Set α) :
          (a dirac b) s = s.indicator (fun (x : α) => a) b
          def MeasureTheory.OuterMeasure.comap {α : Type u_1} {β : Type u_3} (f : αβ) :

          Pullback of an OuterMeasure: comap f μ s = μ (f '' s).

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem MeasureTheory.OuterMeasure.comap_apply {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure β) (s : Set α) :
            ((comap f) m) s = m (f '' s)
            theorem MeasureTheory.OuterMeasure.comap_mono {α : Type u_1} {β : Type u_3} (f : αβ) :
            @[simp]
            theorem MeasureTheory.OuterMeasure.comap_iSup {α : Type u_1} {β : Type u_3} {ι : Sort u_4} (f : αβ) (m : ιOuterMeasure β) :
            (comap f) (⨆ (i : ι), m i) = ⨆ (i : ι), (comap f) (m i)
            @[simp]
            theorem MeasureTheory.OuterMeasure.restrict_apply {α : Type u_1} (s t : Set α) (m : OuterMeasure α) :
            ((restrict s) m) t = m (t s)
            theorem MeasureTheory.OuterMeasure.restrict_mono {α : Type u_1} {s t : Set α} (h : s t) {m m' : OuterMeasure α} (hm : m m') :
            (restrict s) m (restrict t) m'
            @[simp]
            theorem MeasureTheory.OuterMeasure.restrict_iSup {α : Type u_1} {ι : Sort u_3} (s : Set α) (m : ιOuterMeasure α) :
            (restrict s) (⨆ (i : ι), m i) = ⨆ (i : ι), (restrict s) (m i)
            theorem MeasureTheory.OuterMeasure.map_comap {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure β) :
            (map f) ((comap f) m) = (restrict (Set.range f)) m
            theorem MeasureTheory.OuterMeasure.map_comap_le {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure β) :
            (map f) ((comap f) m) m
            @[simp]
            theorem MeasureTheory.OuterMeasure.map_le_restrict_range {α : Type u_1} {β : Type u_3} {ma : OuterMeasure α} {mb : OuterMeasure β} {f : αβ} :
            (map f) ma (restrict (Set.range f)) mb (map f) ma mb
            theorem MeasureTheory.OuterMeasure.map_comap_of_surjective {α : Type u_1} {β : Type u_3} {f : αβ} (hf : Function.Surjective f) (m : OuterMeasure β) :
            (map f) ((comap f) m) = m
            theorem MeasureTheory.OuterMeasure.le_comap_map {α : Type u_1} {β : Type u_3} (f : αβ) (m : OuterMeasure α) :
            m (comap f) ((map f) m)
            theorem MeasureTheory.OuterMeasure.comap_map {α : Type u_1} {β : Type u_3} {f : αβ} (hf : Function.Injective f) (m : OuterMeasure α) :
            (comap f) ((map f) m) = m
            @[simp]
            theorem MeasureTheory.OuterMeasure.top_apply {α : Type u_1} {s : Set α} (h : s.Nonempty) :
            theorem MeasureTheory.OuterMeasure.top_apply' {α : Type u_1} (s : Set α) :
            s = ⨅ (_ : s = ), 0
            @[simp]
            theorem MeasureTheory.OuterMeasure.comap_top {α : Type u_1} {β : Type u_2} (f : αβ) :
            theorem MeasureTheory.OuterMeasure.map_top {α : Type u_1} {β : Type u_2} (f : αβ) :
            @[simp]
            theorem MeasureTheory.OuterMeasure.map_top_of_surjective {α : Type u_1} {β : Type u_2} (f : αβ) (hf : Function.Surjective f) :
            (map f) =