Documentation

Mathlib.MeasureTheory.Measure.PreVariation

Pre-variation of a subadditive set function #

Given a σ-subadditive ℝ≥0∞-valued set function f, we define the pre-variation as the supremum over finite measurable partitions of the sum of f on the parts. This construction yields a measure.

Main definitions #

References #

Pre-variation of a subadditive ℝ≥0∞-valued function #

Given a set function f : Set X → ℝ≥0∞ we can define another set function by taking the supremum over all finite partitions of measurable sets E i of the sum of ∑ i, f (E i). If f is σ-subadditive then the function defined is an ℝ≥0∞-valued measure.

noncomputable def MeasureTheory.preVariationFun {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) (s : Set X) :

If s is measurable then preVariationFun f s is the supremum over partitions P of s of the quantity ∑ p ∈ P.parts, f p. If s is not measurable then it is set to 0.

Equations
Instances For

    preVariationFun of the empty set is equal to zero.

    theorem MeasureTheory.preVariation.sum_le {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s : Set X} (hs : MeasurableSet s) (P : Finpartition s, hs) :
    pP.parts, f p preVariationFun f s
    theorem MeasureTheory.preVariation.sum_le_preVariationFun_of_subset {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s₁ s₂ : Set X} (hs₁ : MeasurableSet s₁) (hs₂ : MeasurableSet s₂) (h : s₁ s₂) (P : Finpartition s₁, hs₁) :
    pP.parts, f p preVariationFun f s₂

    If P is a partition of s₁ and s₁ ⊆ s₂ then ∑ p ∈ P.parts, f p ≤ preVariationFun f s₂.

    theorem MeasureTheory.preVariation.mono {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s₁ s₂ : Set X} (hs₂ : MeasurableSet s₂) (h : s₁ s₂) :

    preVariationFun is monotone in terms of the (measurable) set.

    theorem MeasureTheory.preVariation.exists_Finpartition_sum_gt {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s : Set X} (hs : MeasurableSet s) {a : ENNReal} (ha : a < preVariationFun f s) :
    ∃ (P : Finpartition s, hs), a < pP.parts, f p
    theorem MeasureTheory.preVariation.exists_Finpartition_sum_ge {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s : Set X} (hs : MeasurableSet s) {ε : NNReal} ( : 0 < ε) (h : preVariationFun f s ) :
    ∃ (P : Finpartition s, hs), preVariationFun f s pP.parts, f p + ε
    theorem MeasureTheory.preVariation.Finset.sup_measurableSetSubtype_eq_biUnion {X : Type u_1} [MeasurableSpace X] {ι : Type u_2} (s : ιSubtype MeasurableSet) (I : Finset ι) :
    (I.sup s) = iI, (s i)

    The sup of measurable set subtypes over a finset equals the biUnion of the underlying sets.

    theorem MeasureTheory.preVariation.sum_le_preVariationFun_iUnion' {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s : Set X} (hs : ∀ (i : ), MeasurableSet (s i)) (hs' : Pairwise (Function.onFun Disjoint s)) (P : (i : ) → Finpartition s i, ) (n : ) :
    iFinset.range n, p(P i).parts, f p preVariationFun f (⋃ (i : ), s i)
    theorem MeasureTheory.preVariation.sum_le_preVariationFun_iUnion {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) {s : Set X} (hs : ∀ (i : ), MeasurableSet (s i)) (hs' : Pairwise (Function.onFun Disjoint s)) :
    ∑' (i : ), preVariationFun f (s i) preVariationFun f (⋃ (i : ), s i)

    A set function is σ-subadditive on measurable sets if the value assigned to the union of a countable disjoint family of measurable sets is bounded above by the sum of values on the family.

    Equations
    Instances For
      theorem MeasureTheory.preVariation.iUnion {X : Type u_1} [MeasurableSpace X] {f : Set XENNReal} (hf : IsSigmaSubadditiveSetFun f) (hf' : f = 0) (s : Set X) (hs : ∀ (i : ), MeasurableSet (s i)) (hs' : Pairwise (Function.onFun Disjoint s)) :
      HasSum (fun (i : ) => preVariationFun f (s i)) (preVariationFun f (⋃ (i : ), s i))

      Additivity of preVariationFun for disjoint measurable sets.

      Construction of measures from σ-subadditive functions #

      noncomputable def MeasureTheory.ennrealPreVariation {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) (hf : IsSigmaSubadditiveSetFun f) (hf' : f = 0) :

      The VectorMeasure X ℝ≥0∞ built from a σ-subadditive function.

      Equations
      Instances For
        noncomputable def MeasureTheory.preVariation {X : Type u_1} [MeasurableSpace X] (f : Set XENNReal) (hf : IsSigmaSubadditiveSetFun f) (hf' : f = 0) :

        The Measure X built from a σ-subadditive function.

        Equations
        Instances For