Documentation

Mathlib.NumberTheory.BernoulliPolynomials

Bernoulli polynomials #

The Bernoulli polynomials are an important tool obtained from Bernoulli numbers.

Mathematical overview #

The $n$-th Bernoulli polynomial is defined as $$ B_n(X) = ∑_{k = 0}^n {n \choose k} (-1)^k B_k X^{n - k} $$ where $B_k$ is the $k$-th Bernoulli number. The Bernoulli polynomials are generating functions, $$ \frac{t e^{tX} }{ e^t - 1} = ∑_{n = 0}^{\infty} B_n(X) \frac{t^n}{n!} $$

Implementation detail #

Bernoulli polynomials are defined using bernoulli, the Bernoulli numbers.

Main theorems #

TODO #

The Bernoulli polynomials are defined in terms of the negative Bernoulli numbers.

Equations
Instances For
    theorem Polynomial.derivative_bernoulli_add_one (k : ) :
    Polynomial.derivative (Polynomial.bernoulli (k + 1)) = (k + 1) * Polynomial.bernoulli k
    theorem Polynomial.derivative_bernoulli (k : ) :
    Polynomial.derivative (Polynomial.bernoulli k) = k * Polynomial.bernoulli (k - 1)
    @[simp]
    theorem Polynomial.sum_bernoulli (n : ) :
    (Finset.sum (Finset.range (n + 1)) fun (k : ) => (Nat.choose (n + 1) k) Polynomial.bernoulli k) = (Polynomial.monomial n) (n + 1)

    Another version of sum_range_pow.

    The theorem that $(e^X - 1) * ∑ Bₙ(t)* X^n/n! = Xe^{tX}$